ArticleOriginal scientific text
Title
On vector-valued inequalities for Sidon sets and sets of interpolation
Authors 1
Affiliations
- Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211, U.S.A.
Abstract
Let E be a Sidon subset of the integers and suppose X is a Banach space. Then Pisier has shown that E-spectral polynomials with values in X behave like Rademacher sums with respect to -norms. We consider the situation when X is a quasi-Banach space. For general quasi-Banach spaces we show that a similar result holds if and only if E is a set of interpolation ( -set). However, for certain special classes of quasi-Banach spaces we are able to prove such a result for larger sets. Thus if X is restricted to be "natural" then the result holds for all Sidon sets. We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.
Bibliography
- N. Asmar and S. J. Montgomery-Smith, On the distribution of Sidon series, Ark. Mat., to appear.
- D. Grow, A class of
-sets, Colloq. Math. 53 (1987), 111-124. - S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, ibid. 12 (1964), 23-39.
- S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, II, ibid. 15 (1966), 79-86.
- J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson, ibid. 15 (1966), 87-92.
- N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86.
- N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (1986), 297-324.
- J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, ibid. 29 (1968), 167-193.
- J.-F. Méla, Sur certains ensembles exceptionnels en analyse de Fourier, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 32-71.
- J. Mycielski, On a problem of interpolation by periodic functions, Colloq. Math. 8 (1961), 95-97.
- A. Pełczyński, Commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531.
- G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, in: Séminaire sur la géométrie des espaces de Banach, Ecole Polytechnique, Palaiseau, Exposé VII, 1977-78.
- C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235-237.
- E. Strzelecki, Some theorems on interpolation by periodic functions, ibid. 12 (1964), 239-248.