ArticleOriginal scientific text

Title

On semigroups generated by subelliptic operators on homogeneous groups

Authors 1

Affiliations

  1. Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Keywords

holomorphic semigroups of operators, Rockland operators, homogeneous groups

Bibliography

  1. [DH] J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989), 81-95.
  2. [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, 1982.
  3. [G] P. Głowacki, Stable semigroups of measures as commutative approximate identities on homogeneous groups, Invent. Math. 83 (1986), 557-587.
  4. [Go] R. Goodman, Singular integral operators on nilpotent Lie groups, Ark. Mat. 18 (1980), 1-11.
  5. [He] W. Hebisch, Sharp pointwise estimate for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups, Studia Math. 95 (1989), 93-106.
  6. [HN] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958.
  7. [H] A. Hulanicki, Subalgebra of L1(G) associated with Laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287.
  8. [H1] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266.
  9. [NS] E. Nelson and W. F. Stinespring, Representation of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560.
  10. [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983.
Pages:
215-231
Main language of publication
English
Received
1991-12-11
Published
1993
Exact and natural sciences