ArticleOriginal scientific text

Title

A characterization of modular lattices

Authors 1

Affiliations

  1. Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2, 50-384 Wrocław, Poland

Bibliography

  1. J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191.
  2. J. Dudek, Varieties of idempotent commutative groupoids, ibid., 193-204.
  3. J. Dudek, A polynomial characterization of some idempotent algebras, Acta Sci. Math. (Szeged) 50 (1985), 39-49.
  4. J. Dudek, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308-312.
  5. J. Dudek, A polynomial characterization of nondistributive modular lattices, Colloq. Math. 55 (1988), 195-212.
  6. J. Dudek, Characterizations of distributive lattices, to appear.
  7. J. Dudek and A. Kisielewicz, On finite models of regular identities, Notre Dame J. Formal Logic 30 (2) (1989), 624-628.
  8. G. Grätzer, Compositions of functions, in: Proc. Conference on Universal Algebra (Kingston, 1969), Queen's Univ., Kingston, Ont., 1970, 1-106.
  9. G. Grätzer, Universal Algebra, 2nd ed., Springer, New York 1979.
  10. G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra I, Pacific J. Math. 32 (1970), 697-709.
  11. J. Luo, Characterizations of distributive bisemilattices and modular lattices, Acta Sci. Natur. Univ. Intramongolicae 18 (4) (1987), 623-633.
  12. J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247.
  13. W. Taylor, Equational logic, Houston J. Math. 5 (1979), Survey, 1-83.
Pages:
193-201
Main language of publication
English
Received
1991-09-13
Published
1993
Exact and natural sciences