PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1993 | 64 | 1 | 93-101
Tytuł artykułu

Change of variables formula under minimal assumptions

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the previous papers concerning the change of variables formula (in the form involving the Banach indicatrix) various assumptions were made about the corresponding transformation (see e.g. [BI], [GR], [F], [RR]). The full treatment of the case of continuous transformation is given in [RR]. In [BI] the transformation was assumed to be continuous, a.e. differentiable and with locally integrable Jacobian. In this paper we show that none of these assumptions is necessary (Theorem 2). We only need the a.e. existence of approximate partial derivatives. In Section 3 we consider the general form of the change of variables formula for Sobolev mappings. The author wishes to thank Professor Bogdan Bojarski for many stimulating conversations and suggestions.
Słowa kluczowe
Rocznik
Tom
64
Numer
1
Strony
93-101
Opis fizyczny
Daty
wydano
1993
otrzymano
1991-12-11
Twórcy
  • Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
  • [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in $R^n$, Ann. Acad. Sci. Fenn. Ser. AI Math. 8 (1983), 257-324.
  • [F] H. Federer, Geometric Measure Theory, Springer, 1969.
  • [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, New York 1983.
  • [GR] V. M. Goldshteĭn and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings, Nauka, Moscow 1983 (in Russian).
  • [H] P. Hajłasz, Co-area formula, Sobolev mappings and related topics, in preparation.
  • [He] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
  • [IM] T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Mittag-Leffler Report #19, 1989/90 (to appear in Acta Math.).
  • [K] M. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math. 22 (1934), 77-108.
  • [M] O. Martio, Lusin's condition (N) and mappings with non-negative Jacobians, preprint.
  • [P1] S. P. Ponomarev, An example of an $ACTL^p$ homeomorphism which is not absolutely continuous in Banach sense, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian).
  • [P2] S. P. Ponomarev, On the property N for homeomorphisms of class $W_p^1$, Sibirsk. Mat. Zh. 28 (2) (1987), 140-148 (in Russian).
  • [RR] T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, 1955.
  • [R1] Yu. G. Reshetnyak, Some geometrical properties of functions and mappings with generalized derivatives, Sibirsk. Mat. Zh. 7 (4) (1966), 886-919 (in Russian).
  • [R2] Yu. G. Reshetnyak, On the condition N for mappings of class $W_{n,loc}^{1}$, ibid. 28 (5) (1987), 149-153 (in Russian).
  • [S] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3, 1983.
  • [V] J. Väisälä, Quasiconformal maps and positive boundary measure, Analysis 9 (1989), 205-216.
  • [W] H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951), 143-159.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv64i1p93bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.