ArticleOriginal scientific text
Title
Pseudocompactness - from compactifications to multiplication of borel sets
Authors 1
Affiliations
- Institute of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Bibliography
- A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67.
- B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), Topology Appl. 13 (1982), 1-13.
- B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), II, ibid. 15 (1983), 1-6.
- J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117.
- J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998.
- K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176.
- R. Engelking, General Topology, PWN, Warszawa 1977.
- L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976.
- K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968.
- B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
- C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181.
- E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290.
- E. Wajch, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484.