ArticleOriginal scientific text

Title

Pseudocompactness - from compactifications to multiplication of borel sets

Authors 1

Affiliations

  1. Institute of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland

Bibliography

  1. A. G. Babiker and J. D. Knowles, Functions and measures on product spaces, Mathematika 32 (1985), 60-67.
  2. B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), Topology Appl. 13 (1982), 1-13.
  3. B. J. Ball and S. Yokura, Compactifications determined by subsets of C*(X), II, ibid. 15 (1983), 1-6.
  4. J. L. Blasco, Hausdorff compactifications and Lebesgue sets, ibid., 111-117.
  5. J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998.
  6. K. Ciesielski and F. Galvin, Cylinder problem, Fund. Math. 127 (1987), 171-176.
  7. R. Engelking, General Topology, PWN, Warszawa 1977.
  8. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York 1976.
  9. K. Kunen, Inaccessibility properties of cardinals, PhD Thesis, Stanford University, Palo Alto 1968.
  10. B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc. 75 (1969), 614-617.
  11. C. A. Rogers and J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, London 1980, 1-181.
  12. E. Wajch, Complete rings of functions and Wallman-Frink compactifications, Colloq. Math. 56 (1988), 281-290.
  13. E. Wajch, Compactifications and L-separation, Comment. Math. Univ. Carolinae 29 (1988), 477-484.
Pages:
303-309
Main language of publication
English
Received
1991-01-11
Accepted
1991-09-13
Published
1992
Exact and natural sciences