ArticleOriginal scientific textThe size of
Title
The size of multipliers
Authors 1
Affiliations
- Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Bibliography
- H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32-43.
- A. Bonami, Étude des coefficients de Fourier des fonctions de
, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. - M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83.
- R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
- C. Graham, K. Hare and D. Ritter, The size of
-improving measures, J. Funct. Anal. 84 (1989), 472-495. - C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
- K. Hare, A characterization of
-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. - K. Hare, Properties and examples of
multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. - R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971.
- J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975.
- D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113-117.
- J. Price, Some strict inclusions between spaces of
-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330. - D. Ritter, Most Riesz product mesures are
-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295. - D. Ritter, Some singular measures on the circle which improve
spaces, Colloq. Math. 52 (1987), 133-144. - W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
- E. M. Stein, Harmonic analysis on
, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97-135.