ArticleOriginal scientific text

Title

A generalization of Davenport's constant and its arithmetical applications

Authors 1

Affiliations

  1. Institut Für Mathematik, Karl-Franzens-Universität, Heinrichstrasse 36, A-8010 Graz, Austria

Bibliography

  1. P. C. Baayen, Een combinatorisch problem voor eindige Abelse groepen, Math. Centrum Syllabus 5, Coll. Discrete Wiskunde Caput 3, Math. Centre Amsterdam, 1968.
  2. P. van Emde Boas, A combinatorial problem on finite Abelian groups II, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-007, 1969.
  3. P. van Emde Boas and D. Kruyswijk, A combinatorial problem on finite abelian groups III, Stichting Mathematisch Centrum Amsterdam, Report ZW 1969-008, 1969.
  4. A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math. Z. 197 (1988), 505-529.
  5. F. Halter-Koch, Factorization of algebraic integers, Ber. Math.-Stat. Sektion Forschungszentrum Graz 191 (1983).
  6. F. Halter-Koch and W. Müller, Quantitative aspects of non-unique factorization: A general theory with applications to algebraic function fields, J. Reine Angew. Math. 421 (1991), 159-188.
  7. J. Kaczorowski, Some remarks on factorization in algebraic number fields, Acta Arith. 43 (1983), 53-68.
  8. W. Narkiewicz, Finite abelian groups and factorization problems, Colloq. Math. 42 (1979), 319-330.
  9. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer, 1990.
  10. J. E. Olson, A combinatorial problem on finite Abelian groups, I, J. Number Theory 1 (1969), 8-10.
  11. J. E. Olson, A combinatorial problem on finite Abelian groups, II, ibid., 195-199.
  12. P. Rémond, Étude asymptotique de certaines partitions dans certaines semi- groupes, Ann. Sci. École Norm. Sup. 83 (1966), 343-410.
Pages:
203-210
Main language of publication
English
Received
1991-01-14
Published
1992
Exact and natural sciences