ArticleOriginal scientific text
Title
On the structure of Jordan *-derivations
Authors 1, 2
Affiliations
- Department of Mathematics, University of Maribor, PF, Koroška 160, 62000 Maribor, Slovenia
- Department of Mathematics, University of Ljubljana, SF, Murnikova 2, 61000 Ljubljana, Slovenia
Bibliography
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
- M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
- M. Brešar, Jordan mappings of semiprime rings, J. Algebra 127 (1989), 218-228.
- M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. 38 (1989), 178-185.
- M. Brešar and J. Vukman, Jordan (Θ,φ)-derivations, Glasnik Mat., to appear.
- R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99.
- P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 257-289.
- S. Kurepa, Quadratic and sesquilinear functionals, Glasnik Mat. Fiz.-Astronom. 20 (1965), 79-92.
- A. Leroy et J. Matczuk, Quelques remarques à propos des S-dérivations, Comm. Algebra 13 (1985), 1229-1244.
- W. S. Martindale, Jordan homomorphisms of the symmetric elements of a ring with involution, J. Algebra 5 (1967), 232-249.
- W. S. Martindale, Prime rings satisfying a generalized polynomial identity, ibid. 12 (1969), 576- 584.
- P. Šemrl, On quadratic functionals, Bull. Austral. Math. Soc. 37 (1988), 27-28.
- P. Šemrl, On Jordan *-derivations and an application, Colloq. Math. 59 (1990), 241-251.
- P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Math. 97 (1991), 157- 165.
- P. Vrbová, Quadratic functionals and bilinear forms, Časopis Pěst. Mat. 98 (1973), 159-161.
- J. Vukman, Some functional equations in Banach algebras and an application, Proc. Amer. Math. Soc. 100 (1987), 133-136.