ArticleOriginal scientific text

Title

On complete orbit spaces of SL(2) actions, II

Authors 1, 1

Affiliations

  1. Institute of Mathematics, University of Warsaw, Banacha 2, 00-913 Warszawa 59, Poland

Abstract

The aim of this paper is to extend the results of [BB-Ś2] concerning geometric quotients of actions of SL(2) to the case of good quotients. Thus the results of the present paper can be applied to any action of SL(2) on a complete smooth algebraic variety, while the theorems proved in [BB-Ś2] concerned only special situations.

Bibliography

  1. [BB-S] A. Białynicki-Birula and A. J. Sommese, Quotients by ℂ* and SL(2,ℂ) actions, Trans. Amer. Math. Soc. 279 (1983), 773-800.
  2. [BB-Ś1] A. Białynicki-Birula and J. Święcicka, Complete quotients by algebraic torus actions, in: Group Actions and Vector Fields, Lecture Notes in Math. 956, Springer, 1981, 10-22.
  3. [BB-Ś2] A. Białynicki-Birula and J. Święcicka, On complete orbit spaces of SL(2)-actions, Colloq. Math. 55 (1988), 229-243.
  4. [BB-Ś3] A. Białynicki-Birula and J. Święcicka, Good quotients for actions of SL(2), Bull. Polish Acad. Sci. Math. 36 (1988), 375-381.
  5. [BB-Ś4] A. Białynicki-Birula and J. Święcicka, A reduction theorem for existence of good quotients, Amer. J. Math. 113 (1991), 189-201.
  6. [C-S] J. Carrell and A. J. Sommese, SL(2,ℂ) actions on compact Kaehler manifolds, Trans. Amer. Math. Soc. 276 (1983), 165-179.
  7. [K] D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer, 1971.
  8. [L] D. Luna, Slices étale, Bull. Soc. Math. France Mém. 33 (1973), 81-105.
  9. [GIT] D. Mumford, Geometric Invariant Theory, Ergeb. Math. Grenzgeb. 34, Springer, 1982.
  10. [S] H. Sumihiro, Equivariant completions, J. Math. Kyoto Univ. 14 (1974), 1-28.
Pages:
9-20
Main language of publication
English
Received
1990-06-13
Published
1992
Exact and natural sciences