ArticleOriginal scientific text
Title
A note on geodesic mappings of pseudosymmetric Riemannian manifolds
Authors 1, 2
Affiliations
- Instituut Voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3030 Leuven, Belgium
- Department of Mathematics, Agricultural Academy, C. Norwida 25, 50-375 Wrocław, Poland
Bibliography
- A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59.
- J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65.
- R. Deszcz, On pseudosymmetric warped product manifolds, J. Geom., to appear.
- R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322.
- R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251-262.
- R. Deszcz and M. Hotloś, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19-27.
- R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print.
- J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813.
- Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582.
- Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65-108.