ArticleOriginal scientific text

Title

Some additive properties of special sets of reals

Authors 1

Affiliations

  1. Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland

Bibliography

  1. J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1981/82), 185-232.
  2. P. Erdős, K. Kunen and R. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199.
  3. W. G. Fleissner and A. W. Miller, On Q-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284.
  4. D. H. Fremlin and J. Jasiński, Gδ-covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538.
  5. F. Galvin, J. Mycielski and R. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.
  6. E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7-10.
  7. E. Grzegorek, Always of the first category sets, in: Proc. 12th Winter School on Abstract Analysis, Srní 15-29 January, 1984, Section Topology, Rend. Circ. Mat. Palermo (2) Suppl. 6 (1984), 139-147.
  8. K. Kuratowski, Topology I, Academic Press, New York, and PWN, Warszawa 1966.
  9. A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam 1984, 201-233.
  10. J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147.
  11. J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141.
  12. W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc. (3) 58 (1989), 417-438
Pages:
221-226
Main language of publication
English
Received
1988-12-19
Accepted
1990-08-30
Published
1991
Exact and natural sciences