Download PDF - Are EC-spaces AE(metrizable)?
ArticleOriginal scientific text
Title
Are EC-spaces AE(metrizable)?
Authors 1
Affiliations
- Department of Mathematics, University of California, Davis, California 95616, U.S.A.
Keywords
AE(metrizable), -space, equiconnected, embedding
Bibliography
- R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-404.
- C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Polish Scientific Publishers, Warszawa 1975.
- C. R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617.
- C. R. Borges, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30.
- C. R. Borges, On stratifiable spaces, ibid. 17 (1966), 1-16.
- C. R. Borges, Continuous selections for one-to-finite continuous multifunctions, Questions Answers Gen. Topology 3 (1985/86), 103-109.
- C. R. Borges, Negligibility in F-spaces, Math. Japon. 32 (1987), 521-530.
- J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 62 (1965), 187-193.
- J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
- E. A. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806.
- E. A. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416.
- J. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 63 (1956), 272-284.
- J. Nagata, Modern Dimension Theory, Heldermann Verlag, Berlin 1983.