ArticleOriginal scientific text

Title

Are EC-spaces AE(metrizable)?

Authors 1

Affiliations

  1. Department of Mathematics, University of California, Davis, California 95616, U.S.A.

Keywords

AE(metrizable), kω-space, equiconnected, embedding

Bibliography

  1. R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-404.
  2. C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Polish Scientific Publishers, Warszawa 1975.
  3. C. R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617.
  4. C. R. Borges, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30.
  5. C. R. Borges, On stratifiable spaces, ibid. 17 (1966), 1-16.
  6. C. R. Borges, Continuous selections for one-to-finite continuous multifunctions, Questions Answers Gen. Topology 3 (1985/86), 103-109.
  7. C. R. Borges, Negligibility in F-spaces, Math. Japon. 32 (1987), 521-530.
  8. J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 62 (1965), 187-193.
  9. J. Dugundji, Topology, Allyn and Bacon, Boston 1966.
  10. E. A. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806.
  11. E. A. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416.
  12. J. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 63 (1956), 272-284.
  13. J. Nagata, Modern Dimension Theory, Heldermann Verlag, Berlin 1983.
Pages:
135-143
Main language of publication
English
Received
1987-09-22
Accepted
1989-10-31
Published
1991
Exact and natural sciences