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The aim of this paper is to define the space S(@) of infinitely differ-
entiable rapidly decreasing functions on an arbitrary locally compact
Abelian group and by means of this to formulate and prove the Bochner-
Schwartz theorem on positive definite distributions. Our definition of the
space §(G) is equivalent to the one given by Bruhat [1]. Theorems announ-
ced by him, the proofs of which have never been published in details,
are formulated and proved in part 3 of the present paper. All these will
serve us in proving the Bochner-Schwartz theorem for arbitrary locally
compact Abelian groups.

We begin with section 1 which comprises a summary of definitions
and facts on Pontriagin duality theory and some structural theorems
on locally compact Abelian groups that will be used throughout, intro-
ducing at the same time the notation employed. Section 2 is devoted
to the definition and some properties of differential operators and poly-
nomials on an arbitrary locally compact Abelian group which lead to
the definition of the class of rapidly decreasing infinitely differentiable
functions in section 3. Section 4 contains the generalized Bochner-Schwartz
theorem and all whatever we have to add to it.

1. Structure theorems on locally compact Abelian groups. All groups
here are additively written locally compact Abelian groups. The group
of characters of a group G is denoted by I7, and the value of a yel’ on
geG by <g,y>. Throughout what follows, R will denote the additive
group of the reals, Z the additive group of integers and 7' the multipli-
cative group of the complex numbers of modulus 1.

For two groups ¢ and H, G+ H will denote the direct sum of ¢
and H and G" will stand for the direct sum of n copies of G.

DEFINITION 1.1. A group of the form R*4-Z'4+ 7™ F, where F is
a finite group, is called an elementary group.
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Elementary groups are building blocks of an arbitrary group. Partly
for completeness and partly to clarify the situation and to introduce a no-
tation convenient for us we include the definitions of the well-known
notions of the direct and inverse limit of groups and we recall the
Pontriagin duality theory.

DErINITION 1.2, Let (7, <) be a directed system. Suppose that for
each lem a group G, is given. We say that a group ¢ is the direct limit
of groups G, symbolically

G = lim,(G;, h;),
if for each ilex a continuous monomorphism hy: G, —~ G exists, h;(G;)
being an open subgroup of &, and |J k,;(G;) = G and for each pair 1 < u
A

a continuous monomorphism hu: Gy — @G, exists with:

1. hy; is the identity map on G,

2.if 2 <, then h; = h, 0 ky,,

3. 1f 1 < u <, then h; = b © hy,.

DeriNiTION 1.3. Again let (ax, <) be a directed system. Suppose
that for each 2ex a group 6% is given and for each pair 2 < w with 1, uex
an epimorphism #*: @* — G* is given in such a way that

1. 2" is the identity map on G

2. for any 2 < u < » we have #” = 2™ o 2.

A group G is an inverse limit of G, symbolically

G = lim, (G*, %),

<~

if for each Aenm there exists an epimorphism with compact kernel xz*:
#; : G — G* such that M (#)'(0) = 0, and
u

3. 28 = a™oa" for A < .

DEFINITION 1.4, Let H be closed subgroup of @. The annihilator H*
of I is the subgroup of the character group I’ consisting of the homo-
morphisms which take H into 1.

Let us list some of the properties of H-.

Prorosirion 1.5. (a) H** = H; (b) H" is isomorphic to the cha-
racter group of G/H; (¢) I'JH* is isomorphic to the character group of H;
(d) of H is compact, then H" is open in I' (so G[H is discrete); (e) if H is
open i G, then H* is compact.

COROLLARIES. By (a), putting H = (, we see that the character group
of 1" is (.

If G is an inverse limit of groups (G*), then the character group I of G
is a direct limit of the character groups I', of G*.
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In fact, the monomorphisms #;,: I, — I', are given by the formula
(1.1) Gy Mauya> = <@g, ya>.

Conversely, the character group & of a direct limit /" of groups (/%)
is an inverse limit of the character groups G* of I';, the epimorphisms 2™
being defined by (1.1) read from the right to the left.

ProprosITioN 1.6. The character groups of R, Z, T are R, T, Z, re-
spectively. The character group of the direct sum of two groups is the direct
sum of the dual groups. Consequently, the character group of an elementary
group RF+Z'4+T™+F is RE+Z™+ T 1 P,

DEFINITION 1.7. A group @ is said to be compactly generated, if there
is a compact neighbourhood of zero such that @ is generated by the ele-
ments of it, '

A group is sald to be a Lie group if it contains an open neighbour-
hood of zero homeomorphic to a Euclidean space.

Prorosition 1.8 (¢f. [7]). The class of compactly generated groups
is identical with the class of inverse limits of elementary groups.

The class of Lie groups is identical with the class of direct limits of
elementary groups.

Prorosrrion 1.9 (cf. [7]). The character group of a Lie group 1is
compactly generated, and vice wversa.

Prorosirron 1.10 (ef. [T]). Any group G is

(I) a direct limit of compactly generated groups,
and, on the other hand,

(IT) an inverse limit of Lie groups.

According to (I) we write

& = 1iml('G,1, h;{) and I = liml('[‘;', ')71).

Since h; and 7, are monomorphisms, groups @, and I, may be iden-
tified with their images. Thus, for simplification sake, @, and I’ will be
treated as open subgroups of G and I, respectively. Due to this, (IT) and
the conclusion from Proposition 1.5, groups G and [I" can be presented
in the form of inverse limits of groups ¢* and I, dual to /7, and G,; sym-
bolically,

G =1lim, (6%, ") and 1" = lim,(I", 4.

Then " = G/I'}, I = I'/G;- and the respective epimorphisms are
natural homomorphisms. Kernels of these epimorphisms (otherwise
annihilators of 7', and @;) will be denoted by T* = @ and 6" < I, respec-
tively.
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Let us assume that 2 and u are such that 7% < G,. Then G% = G, /T
= #*(G;) is an open compactly generated subgroup of the Lie group G",
hence, as it is easy to verify, it is an elementary group. Its dual group
is also elementary and isomorphic to I') = I',/O",
Let us fix u and let 7z, denote the set of indices for which 7" < @,.
Let us note that |
G = ]-imﬂ.e:t“(Gl’ hy)  for any u;

thus
- G = lim,, (G4, 15),
where h; are injections G4 in G-,

In turn, for a fixed A let

7 = {pem: T" = @,).

Let # be the open epimorphism @, — G4 being the restriction of 2"
to G;: 23(g9) = 2"(9), g <@,.

We observe that @; = lim, (@3, #;). Hence the group G can be
presented as -
(1.2 ¢ = lim,;lim,G% = lim,lim, G4,
where indices 1 and x run through the sets for which 4 is defined.

The group of characters [" is in turn obtained from elementary
groups 1", by a consecutive direct and inverse passage to the limit exe-
cuted in an arbitrary order,

(1.3) I" = U, B 7't = L, Jim, T,

We shall now consider functions on groups. Any function f defined
on ¢ can be lifted to the group @ in a natural way. In fact, we first write

flg) =flatg)  for  geG,,

which as a function defined on the open subgroup G, of the group @,
is extended to the whole group putting f = 0 on G\G,. The obtained
function is invariant under translations from 7.

A function ¢ on @ constant on the cosets of 7% determines the function
on the elementary group by

gi(@ig) = ¢lg) for  ge@;.

If, in addition, the support of ¢ is contained in &, then ¢4 = ¢.
The Haar measure on ¢ determines an invariant measure on G%, which
we denote by (dg);. Thus for the integrable function f on ¢4 we have

(1.4) [idy = [fiag),
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and if ¢ belongs to L'(G), then

(1.5) Jwdg = [¢i(dg)}; it only suppy < 6.

DEFINITION 1.11. Tf feL'(G), then the function on I' defined by
the formula

(1.6) fy) = [<g, >f(9)ag

is called the Fourier transform of f.

ProposiTION 1.12 (Plancherel —see e.g. Rudin [8]). (I) The Fourier
transform restricted to L'(G) ~ L*(G) is an isometry (with respect to the
L’-norm) onto a dense linear subspace of L*(I"). Hence it may be extended
thoa unique manner to an isometry of L*(G) onto L*(I"). This extension
will be denoted by F.

(IT) If feL'(G) ~ L*(@) and FfeL'(I') ~ L*(I"), the inversion formula
18 valid:

(1.7) f9) = [<g, —»>f(y)dy
Let us define the convolution
(1.8) (F*o)(g) = [flg—h)gp(h)dh

Note the following properties of the convolution:
LeMMA 1.13 (see e.g. Rudin [8]). If f, peL'(G), then fx* el (G)
N

and |f * glly < flligly and also f+q = fi.
LeMMA 1.14. If f =fi‘ and fe L' (@), thenf: v, where y is a function
on 1’2.
Proof. f i3 invariant with respect to the translations by ée®*:

flr+9) = [<a,v><9, DF(@)dg = [<g, y>f(9)dg = f(y).
Still one has to prove that supp f c I',. Let heT"; we have

= [, wi@dg = [<h+g, y>fh+g)dg
= [<ht-g, y>f(g)dg = <k, y>f(y).

Hence (1— <k, y>)f(y) = 0, which means that f(y) = 0 for <h, vy #1
which was to be proved.

A function f(z,n), e R*+ 1™, neZ'+F, on the elementary group
will be called dszerefntzable if for any n the function f(-, ) is differentiable
on RF41™

DEFINITION 1.15. We say that feC*(@) if f is a function on G in-
variant under translations from one of the subgroups 7" for some J7n
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and f% belongs to O"(G%) for every A for which G4 is defined. Infinitely
differentiable functions will be denoted by C%(G).

The class of continuous functions will be denoted by OC(G),
continuous funections with compact supports by Oy (G¢) and COF(G) =
Co(@) A~ C™(G).

ProprosiTioN 1.16. Characters on G are infinitely differentiable.

Proof. Let yel’. Then by (1.3)

yel, = lim,I';,

which is the annihilator of 7% Thus y, is defined for every » such that
T* = @, and T*is the character of the elementary group . Hence it
is infinitely differentiable. By definition of C*((/) the proof follows.

2. Differential operators and polynomials on ¢. We now define
invariant differential operators on the group.

DeFINITION 2.1. The following map is determined on C'(G) by
means of a one-parameter subgroup a(t),teR, of the group G:

CH(G)>p — D,peC(G),
where

(2.1) Dag(g) = lim (g (g a () — ¢(g) )¢~

is called invariant differential operator of the first order.

To prove that this definition is correct we have to show that right-
-hand side of (2.1) exists and belongs to C(G). A homomorphic image
of R, the one-parameter subgroup a(?), is contained in a connected
component of zero, thus it is contained in each of the open subgroups

Y

of group G. Therefore 2" o a(f) defines a one-parameter subgroup of G4,
if only @4 is defined. Since ¢eC' (@), ¢4 exists for some u. If ge,;, then

Daplg) = Yim (% (o (g + a(0)) — g% (o ()
is a continuous function of @, since ¢4eC'(GY).

The space of differential invariant operators of the first order on &
will be denoted by E,(G); E(G) will denote the algebra generated by Ey(()
by means of addition and superposition, supplemented with the identity
map.

ProprosITION 2.2. Let f be a function on G constant on cosets of 1"
Then the following conditions are equivalent:

(a) feC™(G);

(b) DfeC (@) for every DeE(G).
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Proof. (b) results from (a) by the definition of a differential oper-
ator.

To prove (b) = (a) we have to exhibit a sufficient amount of one-
parameter subgroups in group G which mapped down into G4 by of
produce all the differential operators on G%. This is done by the following
well-known

LemmA 2.3 (cf. [6]). Let G be a group, T a compact subgroup, and x
the epimorphism from G to G[T. If a*(1) is a one-parameter subgroup in
G|T, there is a one-parameter subgroup a(t) in G such that x o a(t) = a*(1).

DEFINITION 2.4. Let DeE(G) and yel'. Then

p: 1>y — Dy(0)

is called a polynomial on I
The following proposition, noticed by C. Ryll-Nardzewski, describes
the connection between polynomials and homomorphisms of /7 into R:

ProprosITION 2.5. There exists a linear isomorphism between Eyi(G)
and the space of continuwous homomorphisms I'— R.

If D is the element of E,;(G), then the corresp onding polynomial p
multiplied by —+4 is the homomorphism ['-- R. Kvidently, the map
t — <a(t), v> 1s a character on R, whence it is of the form exp(iif). By
definition of D, since

Ca(t), y+ 0y = exp(id,t)exp(idst) = exp(i(2,+ 25)1)

we have p(y+ 9d) = p(y)+p ().

To prove that p is a continuous homomorphism we note that if y;el’,
jel, tends to y, then <a(t), y;> = exp(id;t) tends to exp(ild,t) = <{a(t), y>
for each t, which shows that 4; tends to A.

Conversely, a continuous homomorphism /" — R determines, by the
duality theorem, a one-parameter subgroup by the formula

a(t), y> = explitp(y))

to which in turn there corresponds the polynomial p(y).

PROPOSITION 2.6. If p* is a linear polynomial on I, then there exists
a polynomial p on I' such that pi = p*

Proof. 1t is the dual theorem to Lemma 2.4. In fact, let Df; be
a differential operator on G induced by p*. Then, by Lemma 2.4, there
exists a differential operator D on G, the restriction of which to C"O(Gﬁ)
equals D). The polynomial on I corresponding to D is the required po-
lynomial p.
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3. Class S(¥). The class S(@) of infinitely differentiable rapidly
decreasing functions on arbitrary locally compact Abelian groups was
defined by Bruhat in [1], where most of the properties of S (@) analogous
to the corresponding ones for the ordinary class S(R*) are listed without
proofs. Here we prove two of the fundamental properties of (@), namely
that the Fourier transform maps isomorphically $(G) onto S(I") and
that S(@) is dense in L'(G).

DEFINITION 3.1. We say that f belongs to S(@) if

(a) feC™(@),

(b) f4 = f for some A and u, and

(¢) for every polynomial p and every differential operator D the
product pDf belongs to L*(@).

In (c) the condition pDfelL?(G) could be equivalently replaced by
pDfeL” (@) for any 1 < a < oo.

In the set S7(G) consisting of functions from S(G) invariant under
translations from 7" whose support is contained in @, the topology is
introduced by means of the set of semi-norms

Ifllo,p = lpDflls,  where  peP(G) and DeE(G)

(P(G) denotes the space of polynomials on G).

The topology in S(G) is then defined as the strongest topology for
which the injections S%(@) — S(@) are continuous.

THEOREM 3.2. The Fourier transform is a linear continuous homo-
morphism from S(@) onto S(I').

Proof. First we note that differentiation and multiplication by
a polynomial map S(G) into S(@). The first fact follows from definition
of §(@), the second is the consequence of the inclusion P(G) < c*(G),
and the fact that D: P(G) — P(G) and D(pf) = (Dp)f+ pDf.

(1) We now prove that a function’f of the class S(G) is dg-integrable)
Let f = ¢, where ¢eS(@). Let peP(G;) have the popertyr |p| = e L(G%.
and let p be an extension of » onto G (cf. Proposition 2.6). Then (f)a
= filpl|pl™" is (dg)-integrable as the product of two functions from L2(G%).
Hence also fpeL(G).

(2) Thus the Fourier transform is well defined on S(G) and by
Plancherel theorem and Lemma 1.14 the Fourier transform of feS(@)
belongs to L*(I"), it is constant on the cosets of a 6%, and the support
of it is in I,.

Moreover, f is differentiable and

" N
(3.1) Df = pfy
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where p eP (@) is the polynomial generated by D e E(I"). In fact, let D e E,(I').
Then

Dfty) =1im [ (<g, a()> 1)t <g, »>f(g)dg

For any ¢ the modulus of the integrand is dominated by pf.
Applying Lebesgue’s theorem, we obtain

Df(y) = Jim(exp (tp(g))—1) g, 7/ (g)dg

= fp(g) g, r>f(g)dg = ;;J\°(af)-

This formula can be extended on DeE(I') by induction. But the
Fourier transform of an integrable function is continuous on I', which

proves the differentiability of f (Proposition 2.2). Another consequence
of the formula above is that differentiation maps F(S(G)) into itself.

(3) We have

AN
(3.2) Df(y) = (—1)"p(»)f(y),

where |a| is the order of D.
Assuming that DeE, (@), we have

= Juim (flg+a)—f(9) ¢ <g, > dg.

The quotient (f(g+ a(t))—'f(g))t_1 tends to Df in the L'(G)-norm.
We have

(flo+aw)—f@) e ~nf], =+

v —Df (g)dz),

<t [|| Df(g+a(v)—Df(g)dv

Since the translations act continuously in L'(G), we obtain the
desired result. Thus

i) =1tinél(ff(y+a(' N gy y>dg— [17f(9) <g, y>dg)

and

Df(y —ltlnﬂlff 9)(<alt), —y>—1)t" g, y>dyg

~

= limt" (¢a(t), —y>—1) [ <g, >f(g9)dg = —p(»)f(p).

t—0

Formula (3.2) follows now by induction.
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As in point (1), it follows from formula (3.2) that

A

p () f(y)e LN (") ~ L*(I)

for every polynomial from P(/"). In virtue of Proposition 1.12 (II) we
have

Fl—») = [<g, v>flg)dg,

whence

(3.3) F(S(G)) o S(I).
By (1) and (2) we obtain

(3.4) F(S('G)) =

and so F(S(@)) = S(I).

(4) It remains to prove that the Fourier transform is a continuous
map on S(G). Let DeE(I'), pePy(I"), |flpp = lpDf|s = [|D1p.fll, for
some D, e Ey(G), and p,eP(G). This, by (2) and (3) and Proposition 1.12 (I),
yields

Dypif = (Dip)f+p.Df;

but D;p, = p,eP(G) and so

1D1p1flle < IWfllpyr =+ [fllny,0; -

THeoreEM 3.3. S(G) is dense in L'(G).

Proof. Since S(G%) is evidently dense in L'(G%), it remains to prove
that | fJ(Gf,) is dense in L'(¢). Let us define a family of projectors by

pya

B f(g) = 17" [£(g+ Ry di",

where dk" is the Haar measure on 7%, and |1"| denotes [dk". Then

1B f =l = 177" || [£g+ ) —flg)ar"],
<V If g+ ) — (@) dk* < sup £ g+ ])—F(g)]l

The above inequality implies that y,E“f is a Moore-Smith sequence
of functions from L'(G) convergent to f in L'(G)-norm. This completes
the proof.

4. Bochner-Schwartz theorem. Now we formulate and prove the
Bochner-Schwartz theorem for an arbitrary locally compact Abelian
group.

In the finite-dimensional space of linear polynomials on the ele-
mentary group [, we choose a basis consisting of polynomials {p;}].
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Then the polynomials

a a a a,
P = pitpt... p, where a = (ag, .. ) By

form a basis of P(/7)).

Let |a| = a,+...+ a, and let the differential operators {D;}] be those
which generate {p;}.

A topology in OF (@) is defined as follows. In the subspace D*(K),
congisting of functions with supports in a compaet set A < G and in-
variant under translations from 7", the topology is given by the set of
semi-norms

(4.1) Al = ( 3 1D°F18)™

lal<p

In the whole space D(G) we define the topology as the strongest
one for which the injections D"(K)-— D(K) are continuous. Clearly,
D(G) = S(@) and the topology of D(G) is stronger.

DEFINITION 4.1. The elements of the space D'(G) of continuous
linear functionals on D(G) will be called distributions on (. Respectively,
S’ (@) denotes the space of tempered distributions, i.e. the space of linear
continuous functionals on S(&).

We shall say that T is a positive-definite distribution if

T(g™*gq) =0
for every geD(G), where ¢* = ¢(g) = [¢(g+ h)p(h)dh.

The following theorem, proved by Maurin [4] and [5], generalizes

the classical Bochner-Schwartz theorem:

THEOREM 4.2. Let G be a separable growp. Ewvery positive-definite
element T e D' (G) is represented by a positive Borel measure m as follows:

(4.2) T(p) = [ ¢(y)dm(y).
REMARK. The assumption of separability can be removed.

For every p and A the functional 7% defined by the formula 7%(¢)
= T(¢), peD(G4) is a positive-definite distribution on G%. We have

(4.3) T(p) = Ti(g) = [ gdm); = m(§).

In this way we obtain a positive functional m defined on those
functions of Cy(/") which are constant on cosets of certain @*. However,
it is a functional continuous in the compact convergence in Oy (I"). Namely,
let » be a function from C,(I") equal to 1 on a compact set K. Now, if ¢
is a function from O’ (/") with a support in K and constant on the cosets
of ®, then

m(p)) = lm(gy) < [ lgllpldm] < suplgl [ lpldm; = suplglm (|p]).
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Thus the functional m(-) can be extended to a positive functional
on Cy(I'), continuous in the compact convergence, which is a measure
on [ .

THEOREM 4.3. The measure m can be extended in a unique way to
a tempered distribution on I

The approach to the proof which follows has been suggested by
A. Hulanicki.

In case ¢ = R", the classical Bochner-Schwartz theorem states that
the measure m which is defined by a positive-definite distribution on
R* by means of formula (4.2) is of polynomial growth. This means that
there exists a polynomial p on R* such that |p|~! belongs to L'(R*, m).

We need here a more detailed formulation of the thesis.

Let |-, be a semi-norm such that the restriction of T to D(K) is
bounded with respect to |-[,. Hence

(4.4) T(@) = |[¢am| <4 3 1Dl =4 N 1p%]s,

v lal<q laj<q

where p® is the polynomial generated by D“.
It is known (cf. [3], p. 200-206) that there is a ¢q for which (4.4)
holds for all compact subsets K in R* and that then the formula

(4.5) [lp/Ttam < 4 ¥ pop~.

lal<q

is valid.

To prove Theorem 4.3 we note that a straight-forward application
of the classical Bochner-Schwartz theorem gives the result for elementary
groups. In fact, let G = R*+T'+Z"+F be an elementary group and
let T be a positive-definite distribution on D(G). Then, by Maurin’s
theorem, there exists a measure on I" = R 4+7™ +T"+F such that

(4.6) T(p) = [gdm  for all peD(G).

We shall prove that there exist polynomials »* and 2 on R* and Z%
respectively, such that

(4.7) [+ )@+ )dm < oo

Let g, (r, t, 2, f) = p(#) xa(f) 8(2) 6 (f) be a function on &, where y e D (R")
and y,(t) = exp(i<n,t)y) for neZ' and teT". The formula

A A

D(E")> p — To(y) = T(pa) = [ ()7 (2) 6(t) d(f) dm

defines a family of positive-definite distributions on R*.
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Let K be a compact subset of G which is a direct sum of K, and K,,
where K, = R* and K, = T'+Z™+F. There exists a seminorm |- ||, such
that for ¢,eD(G) with supports in K we have

1T (pn)| < A |l@nllg-
Hence

(4.8) Ta(e)] = IT(ga)]l <A D IDgulls = 4 D IpFnllz.

lal<g lal<a
Let us choose p,(r) and p,(2) In such a way that
D) 9, 2) < [pa(r)pa(2)].
la|<q

Since z, are characteristic functions of one-point sets {n}, neZ’,
we obtain

(4.9) T(p)| < |p2(n)| Bllpoyplls  for  peD(K) = D(RY).
By (4.5), there exists a polynomial p(r) = 1+ |r°| such that

(410) [ (U4 ) g (2) 0 8(f) dm < [py(m)] B Ipa(1+ 1))l

Now, we can assert that (4.7) is valid provided f is chosen in such
a way that

Y pam)(1+ ) < oo,

neZ!

Returning to the case of an arbitrary group, we have the family
of positive measures on elementary groups defined by

(4.11) [pldm); = [Gdm  tor  geD(I}),

and the corresponding set of positive-definite distributions by

(4.12) T4 (y) = [ pldm),.

In virtue of the theorem proved for elementary groups, (dm), can
be continuously extended to a tempered distribution on I°, which means
that equality (4.11) read in the opposite direction gives the extension
of measure m to S(I).
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