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1. Let X be a Banach space and # — the linear space of all
X-valued Bochner measurable functions defined everywhere on (0, co).
Denote by #(X; X) the family of all linear continuous operators of X
into X and by Z(X; #) the family of all operators of X into .# which
become linear after identification of almost everywhere equal functions
in #. If SeZ(X; #) and xeX, then Sz is a function belonging to #,
defined everywhere on (0, co). For any ?€(0, co) we denote by S,z the
value of Sz at t.

Let Se#(X; .#) be such that

(i) for every weX the equality 8;(S;x) = S s2 holds for almost
every pair (t,s)e(0, co)?;

(i1) there is a function h defined on (0, oo), with values in [0, o),
such that for every xe X the inequality ||S;x| < h(?)|jz|] holds for almost
every te(0, co). : ,

If for every <X, the equality in (i) and the inequality in (ii) hold
for every (t,s8)e(0, c0)?2 and every te(0, co), respectively, and if S is
a linear operator of X into .#, then § is simply a strongly measurable
semi-group defined on (0, cc) of bounded linear operators of X into X,
and by a theorem of Phillips [3], this semi-group is strongly continuous.
But, as pointed out by Feller [1], it is more natural to assume that (i)
and (ii) hold only almost everywhere. The following theorem goes in this
direction:

THEOREM 1. If SeL(X; M) satisfies (i) and (ii), then there exists
a strongly continuous semi-group {Ty:t >0} « L(X; X) such that for
every weX the equality Siw = Tyx holds for almost every te(0, o).

In this paper m will denote the Lebesgue measure, m, — the inner
Lebesgue measure and m* — the outer one.

2. The result of Phillips may be deduced from Theorem 1 as follows.
If {S;:t>0} « £(X; X) is a strongly measurable semigroup, then by
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Theorem 1 there is a strongly continuous semigroup {7%: ¢ > 0} < Z(X; X)
such that, for every zeJX,

(%) m((OJ Oo)\Ex) =0,
where B, = {t: t¢(0, o0), S;x = Tyx}.
For every we¢X and s >0 we have

m ET,.w < ETsm;

r>0
where 7 is rational.

Indeed, let r,,n =1,2,..., be a sequence of positive rationals
converging to s > 0 and let

)
tG m ETr z;
n=1 ”

then T, » converges to T'se and 8T, # = T,T, = for every n =1,2,...
so that

S Tsw = lim 8T, » =lmN,T, ¢ = ITsx  and teHp .

n—oco n—00

Hence, if for any x¢X we put

¥y = nETs:cs
8§>0
then F, = () Er, (r rational), so that, by (x),
r>0
(*+) m ((0, oo)\Fy) = 0.

It follows from (*) and (**) that, for any z<X, every ¢ > 0 may be
written as a sum ¢ = o+ 7, where oeE, and reF,. For, if this is not true
for some ¢ > 0, then (0,%) = (0,t)\E, v (0,t)\(t—F,), so that

t <m((0, t)\E)+m((0, )\(t—F,)) = m((0, )\ E)+m((0, )\ F,) = 0.
But, if ceF, and teF,, then
Byt = 88,2 =8, T, =T Ty =T, .2,

so that o+ 7ek,. Hence E, = (0, oo) for every xe¢E. The semigroups {S;}
and {T;} are therefore identical and the theorem of Phillips is proved.

3. For the proof of Theorem 1 we need some lemmas. Recall that
a point peR" is called a density point of a set B < R" if

lim(mI) " 'my (B ~ I) =1,

I-0

where I runs over n-cubes containing p.
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An extended real-valued function f defined on a set E < R" is
called approximatively lower semi-continuous at point pell if, for every
ae[— oo, co], the inequality a < f(p) implies that p is a density point
of the set {q: qeH,f(q) > a}. We say that f is approwimatively upper
semi-continuous at p, if (—f) is approximatively lower semi-continuous
at p. It is known that a set FeR" is measurable if and only if almost
every its point' is its density point (see [2]). This implies that an
extended real-valued function defined on a measurable set F < R"
is measurable if and only if it is approximatively lower semi-continuous
at almost every pek.

LEMMA 1. Let F be a family of extended real-valued measurable func-
tions defined on a measurable set B < R". Assuming that sup @ = — oo,
for any pelE put

Mp(p) =sup{f(p): feF,f is approximatively lower semi-continuous at p}.

Then
(a) the function Mp is measurable,

(b) for every feF the inequality f(p) < Mp(p) holds almost everywhere
on K,

(¢) if h is an extended real-valued function defined on E such that
for every f e F we have f(p) < h(p) almost everywhere on E, then Mg (p) < h(p)
almost everywhere on K.

Proof. As it is easy to see, Mp is approximatively lower semi-
continuous at every density point of E, and hence it is measurable.
Property (b) follows from the fact that any feF is approximatively
lower semi-continuous at almost every pel. To prove (c), suppose that
Myp(p) < h(p) does not hold almost everywhere on E. Then there is an
¢ > 0 such that the set

A = {p: pek, min(lV[F(p) l) —& > h(P)}

?
€

has positive outer measure. Put

C = {p: pel, My is approximatively upper semi-continuous at p}.

D= {p:ped,lim (ml)'m*(4 ~ I) = 1},

I50
where, in the definition of D, I runs over n-cubes containing p.
Then m(ENC) = 0 by measurability of My and m(AND) = 0 by

the Lebesgue density theorem. Since A < (C ~ D) v (AND) v (ENOC),
this implies that m*(C ~ D) = m*4A > 0 and so ¢ ~ D # 0.
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Let pyeC ~ D. Then pyeA, so that Mz(p,) > — oo and, therefore,
there exists a function feF, which is approximatively lower semi-con-
tinuous at p, and satisfies the inequality f(p,) > min(Mp(p,), 1/e)—e.

Then p, is a density point of the set

‘ 1
B— {p:peE,f(p) > min(MF(p), —) —e}.

&€

Since B is measurable, we have m*(4A A~ B A I) =m*(4 ~ I)—
—m*((4 ~ I)\B) >m*(4 ~ I)~m(I\B) for any m-cube I contain-
ing p,. Because p,eD and it is a density point of B, we infer from this,
by taking I sufficiently small, that m*(4 ~ B) > 0. But f(p) > h(p)
for peA ~ B, so that f(p) < h(p) does not hold almost everywhere on K.
Hence (¢) is proved.

LEMMA 2 (). Let o be an extended real-valued function measurable
on (0, co) such that w(t) < oo for almost every te(0, co) and

o(t+s) < o(t)+o(s)

for almost every pair (t,8)e(0,00)2 Then o is essentially bounded
from above on every interval [a,b] such that 0 << a < b < oo.

Proof. Put A = {(u,v): 0 <v <u < oco}. Using the mapping
(t,8) = (u,v) = (t+s, s), we see that o(u) < w(u—v)+ o(v) for almost
every pair (u, v)eA. Hence, if we put

B, ={v:0<v<u,o(w)>ovu—o)+w)}
for any ue(0, oco) and
Z = {u: ue(0, oo), mKE, > 0},
then mZ = 0. Let 0 < a < b < co. We say that
(%) sup{o(u): ue[a, b]\NZ} < oo.

Indeed, if no, then there is a sequence u,,n = 1,2, ..., such that
Uzela, bINZ and o(u,) = 2n. For any » = 1,2,... put

F, = {v:v¢(0,0), o(v) = n}.

If 0 <v<u, and v¢H, , then w(v)+ o(u,—2) = w(u,) > 2n, so
that veF, or wu,—vel,. Hence (0, u)\ K, < F, < (u,—F,), which,
because of u,¢Z and in consequence, of m#, = 0 implies that

a <y = m((0, u,)\ B, ) < mF,+m(u,—F,) = 2mF,.

(1) This lemma is an adaptation for our purposes of a known lemma used also
by Phillips [3].
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Since m¥F, <b,FV, > F,> ... and ( F, = F,, it follows that
! n=1

1
mk, = inf mFﬂ>§a>0_

n=1,2,...
But this is impossible. Hence (*) must hold and the Lemma is proved.

4. Proof of Theorem 1. Let SeZ(X; .#) satisfy (i) and (ii).
Assuming that sup @ = — oo, put, for any ¢ > 0,

k(t) = sup{||Six||: xe X, |lz|| <1, the function 7 — ||S,z||
is approximatively lower semi-continuous at z = t}.

Then, as it follows from Lemma 1, k¥ is a measurable function on
(0, 00), k(t) < h(t) < co for almost every te(0, co), and

(i)’ for every weX the inequality ||S;z| < k(t)|lz|| holds for almost
every te(0, co).

If weX is arbitrarily fixed, then, by (i) and (ii)’, for almost every
fixed te(0, co) we have
S]] < & (2) [l
and
18 s = IIS Syrl| < k(s) Sl < k(s) k(t) |l

for almost every se(0, co). Because the first and the last members
of the former inequality are two- d1mensmnally measurable, hence, for
every reX, we have

I8¢ s@l] < k() k(s) [l«]

for almost every pair (t, 8)e(0, co)2.
For any pair (¢, 8)e(0, c0)? put

n(t, s) = sup{||Se, .x|: xe X, |lz|| <1, the function (7, ¢) - ||8,, ;2]
is approximatively lower semmontlnuous at (r, o) = (i, s)}.

Then, by the preceding inequality and by (¢) of Lemma 1, we have

n(t, s) < k(t)k(s)

for almost every pair (f, s)e(0, c0)2. On the other hand, for any zeX,
the function (z, ) - (|8, .| is two-dimensionally approximatively lower
semi-continuous at (e, ) = (¢, s), iff the function v — ||S,#| is one-di-
mensionally approximatively lower semi-continuous at = = t+s, so that

n(t,s) = k(t+s)
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for every (t,s)e(0, co)2. Hence k(t-+s) < k(t)k(s) for almost every pair
(¢, 8)€(0, c0)?, which, by applying Lemma 2 to o = logk, implies that

esssupk(t) < oo
[a.]

for every a and b satisfyihg 0<a<b< oo
Let xeX be arbitrarily fixed. Then for almost every wue(0, oo) fixed
and almost every ve(0, oo) fixed we have

HS.,_I_M.’E—S,,_{_”GUH = ]|S,(Suw—S,,m)H < k(r)”Sux_va”

for almost every 7e(0, co). So, by the three-dimensional measurability
of the first and the last member, we have

”Sr+uw S,_]_@,{U” k(T)HSw SQD‘H

for almost every triple (v, u, v)e(0, c0)’. From this, using the mapping
(7, u,v) > (v,t,8) = (v, u+7,v+7), we obtain that the inequality

(4.1) 18e —Ssl] < k(7) |8 0 —8s_ .|
holds three-dimensionally almost everywhere on the set
{(v,%,8): (t,8)e(0, 00)2, 0 < v < min(t, s)}.
Hence, if for any X and ¢ > 0 we put

E.; = {s:8¢(0, o), (4.1) holds for almost every 7¢(0, min(%,s))}

and

E, = {t: 1¢(0, 00), m((0, co)\ E,,) = 0},
then ;
(4.2) m((0, co)\E;) =0 for every weX.

For any #eX,0 <a <b < ocoand 6 >0 put
3 2a/3
g0 (0) = — ess sup k(t)sup [ |8, ,o—8,_,z|dv,
@ [af3,2a/3] aj3
where sup is taken over s,te[a,b] such that |s—t| < 4. Then, since

esssup k(t) < oo,
[a/3,b—a/3]
the function ¢ — S,z is Bochner integrable on [ia,b—1a] and so
t—>{r— 8;_,x} is a continuous mapping of [a,b] into the space of
X-valued Bochner integrable functions on [ia, 2a], normed by
2a/3

le()l = [ |o(7)l|xde.

a3
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Hence
(4.3) im wgqp(0) = 0

0—-+0

for every zeX and 0 < a < b < oo.
If xeX,0 <a < b< oo and t,,t,¢e[a, b] ~ K, then

m([a, b] ~ Esc,tl N :c,tz) =b—a

and so, for any &> 0 there is an se[a, b] ~ Eyy ~ By, such that
wzap([ti—8|) < e and [s—1,| <|[t;—1%,|. By the definition of Hgz, for
t=1,2, we have

184, @ — S,al] < k(7)1 @ —Ss_,a]

for almost every te[}a, §a], so that, integrating both parts with respect
to v on [}a, %a], we obtain

”Stiw_SsmH g ww;a,b(!ti_s,)
for + = 1,2, So
llstlm—stzm“ g wx;a,b(’t2—sl)+8 g wx;a,b(|t1—t2l)+8

and, ¢ > 0 being arbitrary, we see that
(4.4) 18,8 — 8y, || < ayap ([t — o)

for any xeX, 0 < a < b < oo and 1, tye[a,b] ~ E,.

Now we can easily define the semi-group {1::t>0} < £(X, X)
satisfying the statement of Theorem 1. Indeed, for any xeX there is
a unique X-valued function Tz strongly continuous on (0, oco) such that
Tx(t) = 8, for every teH,. Consequently, for any #,yeX and a, R,
we have

T(az+ By)(t) = Si(aw+ py) = aSiz+ Sy = aTw(t)+ Ty (1)
for almost every te(0, co) and so, by continuity,
T(ax+ py) (1) = aTx(t)+ Ty(1)
for every te(0, co). Hence the equality
Tix = Tx(t)

for zeX and te(0, co) defines a family {7;:¢ > 0} of linear operators
of X into X. By (ii)’, for any x X such that ||| <1 and any 0 < a << b
< oo we have

| Tx|| < esssupk(t) < oo
[a.b]
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for almost every te[a,b] and so, by continuity, this inequality holds
for every te[a,b]. This implies that {7}:t >0} < Z(X; X). At last,
if xeX is arbitrarily fixed, then for almost every fixed ¢e(0, co) we have
Tz = 8@, TeSiw = 881 = S; ¢ for almost every se(0, o0), and
Ssp1@ = Ts 4o for almost every se(0, oo), so that T,Tyx = T; ;o for
almost every se(0, oo). It follows by continuity that, for every xeX,
TyTix = T, ;o for every pair (¢, s)e(0, o0)2. Hence {T;:¢ > 0} is a semi-
group and the proof is completed.
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