A REMARK ON CONTINUITY OF ONE-PARAMETER SEMI-GROUPS OF OPERATORS

BY

J. KISYŃSKI (WARSZAWA)

1. Let X be a Banach space and \mathcal{M} — the linear space of all X-valued Bochner measurable functions defined everywhere on $(0, \infty)$. Denote by $\mathcal{L}(X; X)$ the family of all linear continuous operators of X into X and by $\mathcal{L}(X; \mathcal{M})$ the family of all operators of X into \mathcal{M} which become linear after identification of almost everywhere equal functions in \mathcal{M} . If $S \in \mathcal{L}(X; \mathcal{M})$ and $x \in X$, then Sx is a function belonging to \mathcal{M} , defined everywhere on $(0, \infty)$. For any $t \in (0, \infty)$ we denote by $S_t x$ the value of Sx at t.

Let $S \in \mathcal{L}(X; \mathcal{M})$ be such that

- (i) for every $x \in X$ the equality $S_t(S_s x) = S_{t+s} x$ holds for almost every pair $(t, s) \in (0, \infty)^2$;
- (ii) there is a function h defined on $(0, \infty)$, with values in $[0, \infty)$, such that for every $x \in X$ the inequality $||S_t x|| \leq h(t) ||x||$ holds for almost every $t \in (0, \infty)$.

If for every $x \in X$, the equality in (i) and the inequality in (ii) hold for every $(t,s) \in (0,\infty)^2$ and every $t \in (0,\infty)$, respectively, and if S is a linear operator of X into \mathcal{M} , then S is simply a strongly measurable semi-group defined on $(0,\infty)$ of bounded linear operators of X into X, and by a theorem of Phillips [3], this semi-group is strongly continuous. But, as pointed out by Feller [1], it is more natural to assume that (i) and (ii) hold only almost everywhere. The following theorem goes in this direction:

THEOREM 1. If $S \in L(X; M)$ satisfies (i) and (ii), then there exists a strongly continuous semi-group $\{T_t: t > 0\} \subset \mathcal{L}(X; X)$ such that for every $x \in X$ the equality $S_t x = T_t x$ holds for almost every $t \in (0, \infty)$.

In this paper m will denote the Lebesgue measure, m_* — the inner Lebesgue measure and m^* — the outer one.

2. The result of Phillips may be deduced from Theorem 1 as follows. If $\{S_t: t > 0\} \subset \mathcal{L}(X; X)$ is a strongly measurable semigroup, then by

Theorem 1 there is a strongly continuous semigroup $\{T_t: t > 0\} \subset \mathcal{L}(X; X)$ such that, for every $x \in X$,

$$\mathrm{m}\left((0\,,\,\infty)\backslash E_x\right)=0\,,$$

where $E_x = \{t: t \in (0, \infty), S_t x = T_t x\}.$

For every $x \in X$ and s > 0 we have

$$\bigcap_{r>0} E_{T_{r}x} \subset E_{T_{s}x},$$

where r is rational.

Indeed, let $r_n, n = 1, 2, ...$, be a sequence of positive rationals converging to s > 0 and let

$$t \in \bigcap_{n=1}^{\infty} E_{T_{r_n}x};$$

then $T_{r_n}x$ converges to T_sx and $S_tT_{r_n}x=T_tT_{r_n}x$ for every $n=1,2,\ldots$ so that

$$S_t T_s x = \lim_{n \to \infty} S_t T_{r_n} x = \lim_{n \to \infty} T_t T_{r_n} x = T_t T_s x$$
 and $t \in E_{T_s x}$.

Hence, if for any $x \in X$ we put

$$F_x = \bigcap_{s>0} E_{T_{s}x},$$

then $F_x = \bigcap_{r>0} E_{T_{r^x}}$ (r rational), so that, by (*),

$$m((0, \infty) \setminus F_x) = 0.$$

It follows from (*) and (**) that, for any $x \in X$, every t > 0 may be written as a sum $t = \sigma + \tau$, where $\sigma \in E_x$ and $\tau \in F_x$. For, if this is not true for some t > 0, then $(0, t) \subset (0, t) \setminus E_x \cup (0, t) \setminus (t - F_x)$, so that

$$t \leqslant \mathrm{m} ig((0,t) \setminus E_x ig) + \mathrm{m} ig((0,t) \setminus (t-F_x) ig) = \mathrm{m} ig((0,t) \setminus E_x ig) + \mathrm{m} ig((0,t) \setminus F_x ig) = 0.$$

But, if $\sigma \epsilon E_x$ and $\tau \epsilon F_x$, then

$$S_{\sigma+\tau}x = S_{\tau}S_{\sigma}x = S_{\tau}T_{\sigma}x = T_{\tau}T_{\sigma}x = T_{\sigma+\tau}x,$$

so that $\sigma + \tau \in E_x$. Hence $E_x = (0, \infty)$ for every $x \in E$. The semigroups $\{S_t\}$ and $\{T_t\}$ are therefore identical and the theorem of Phillips is proved.

3. For the proof of Theorem 1 we need some lemmas. Recall that a point $p \in \mathbb{R}^n$ is called a *density point* of a set $E \subset \mathbb{R}^n$ if

$$\lim_{I\to 0}(\mathrm{m}I)^{-1}\mathrm{m}_*(E \cap I)=1,$$

where I runs over n-cubes containing p.

An extended real-valued function f defined on a set $E \subset \mathbb{R}^n$ is called approximatively lower semi-continuous at point $p \in E$ if, for every $a \in [-\infty, \infty]$, the inequality a < f(p) implies that p is a density point of the set $\{q: q \in E, f(q) > a\}$. We say that f is approximatively upper semi-continuous at p, if (-f) is approximatively lower semi-continuous at p. It is known that a set $E \in \mathbb{R}^n$ is measurable if and only if almost every its point is its density point (see [2]). This implies that an extended real-valued function defined on a measurable set $E \subset \mathbb{R}^n$ is measurable if and only if it is approximatively lower semi-continuous at almost every $p \in E$.

LEMMA 1. Let F be a family of extended real-valued measurable functions defined on a measurable set $E \subset \mathbb{R}^n$. Assuming that $\sup \emptyset = -\infty$, for any $p \in E$ put

 $M_F(p) = \sup\{f(p): f \in F, f \text{ is approximatively lower semi-continuous at } p\}.$ Then

- (a) the function M_F is measurable,
- (b) for every $f \in F$ the inequality $f(p) \leqslant M_F(p)$ holds almost everywhere on E,
- (c) if h is an extended real-valued function defined on E such that for every $f \in F$ we have $f(p) \leq h(p)$ almost everywhere on E, then $M_F(p) \leq h(p)$ almost everywhere on E.

Proof. As it is easy to see, M_F is approximatively lower semi-continuous at every density point of E, and hence it is measurable. Property (b) follows from the fact that any $f \in F$ is approximatively lower semi-continuous at almost every $p \in E$. To prove (c), suppose that $M_F(p) \leq h(p)$ does not hold almost everywhere on E. Then there is an $\varepsilon > 0$ such that the set

$$A = \left\{p \colon p \: \epsilon \: E, \min \left(M_F(p), rac{1}{arepsilon}
ight) - arepsilon > h(p)
ight\}$$

has positive outer measure. Put

 $C = \{p : p \in E, M_F \text{ is approximatively upper semi-continuous at } p\}.$

$$D = \{p \colon p \, \epsilon A \,, \lim_{I \to 0} \, (\mathbf{m}I)^{-1} \mathbf{m}^* (A \, \cap I) = 1\},$$

where, in the definition of D, I runs over n-cubes containing p.

Then $m(E \setminus C) = 0$ by measurability of M_F and $m(A \setminus D) = 0$ by the Lebesgue density theorem. Since $A \subset (C \cap D) \cup (A \setminus D) \subseteq (E \setminus C)$, this implies that $m^*(C \cap D) = m^*A > 0$ and so $C \cap D \neq 0$.

Let $p_0 \, \epsilon \, C \cap D$. Then $p_0 \, \epsilon \, A$, so that $M_F(p_0) > -\infty$ and, therefore, there exists a function $f \, \epsilon \, F$, which is approximatively lower semi-continuous at p_0 and satisfies the inequality $f(p_0) > \min(M_F(p_0), 1/\epsilon) - \epsilon$.

Then p_0 is a density point of the set

$$B = \Big\{ p \colon p \, \epsilon E, f(p) > \min \left(M_F(p), \frac{1}{\varepsilon} \right) - \varepsilon \Big\}.$$

Since B is measurable, we have $m^*(A \cap B \cap I) = m^*(A \cap I) - m^*((A \cap I) \setminus B) \geqslant m^*(A \cap I) - m(I \setminus B)$ for any n-cube I containing p_0 . Because $p_0 \in D$ and it is a density point of B, we infer from this, by taking I sufficiently small, that $m^*(A \cap B) > 0$. But f(p) > h(p) for $p \in A \cap B$, so that $f(p) \leq h(p)$ does not hold almost everywhere on E. Hence (c) is proved.

LEMMA 2 (1). Let ω be an extended real-valued function measurable on $(0, \infty)$ such that $\omega(t) < \infty$ for almost every $t \in (0, \infty)$ and

$$\omega(t+s) \leqslant \omega(t) + \omega(s)$$

for almost every pair $(t,s) \in (0, \infty)^2$. Then ω is essentially bounded from above on every interval [a, b] such that $0 < a < b < \infty$.

Proof. Put $\Delta = \{(u, v) : 0 < v < u < \infty\}$. Using the mapping $(t, s) \to (u, v) = (t + s, s)$, we see that $\omega(u) \leq \omega(u - v) + \omega(v)$ for almost every pair $(u, v) \in \Delta$. Hence, if we put

$$E_u = \{v : 0 < v < u, \, \omega(u) > \omega(u-v) + \omega(v)\}$$

for any $u \in (0, \infty)$ and

$$Z = \{u \colon u \in (0, \infty), \, \mathbf{m} E_u > 0\},\,$$

then mZ = 0. Let $0 < a < b < \infty$. We say that

$$\sup \{\omega(u) \colon u \in [a, b] \setminus Z\} < \infty.$$

Indeed, if no, then there is a sequence u_n , n = 1, 2, ..., such that $u_n \in [a, b] \setminus Z$ and $\omega(u_n) \ge 2n$. For any n = 1, 2, ... put

$$F_n = \{v \colon v \in (0, b), \omega(v) \geqslant n\}.$$

If $0 < v < u_n$ and $v \notin E_{u_n}$, then $\omega(v) + \omega(u_n - v) \geqslant \omega(u_n) \geqslant 2n$, so that $v \in F_n$ or $u_n - v \in F_n$. Hence $(0, u_n) \setminus E_{u_n} \subset F_n \cup (u_n - F_n)$, which, because of $u_n \notin Z$ and in consequence, of $mE_{u_n} = 0$ implies that

$$a \leqslant u_n = \mathrm{m}(0, u_n) \setminus E_{u_n} \leqslant \mathrm{m}F_n + \mathrm{m}(u_n - F_n) = 2\mathrm{m}F_n.$$

⁽¹⁾ This lemma is an adaptation for our purposes of a known lemma used also by Phillips [3].

Since $mF_n \leq b$, $F_1 \supset F_2 \supset \dots$ and $\bigcap_{n=1}^{\infty} F_n = F_{\infty}$, it follows that

$$\mathrm{m}F_{\infty}=\inf_{n=1,2,\ldots}\mathrm{m}F_{n}\geqslantrac{1}{2}a>0$$
 .

But this is impossible. Hence (*) must hold and the Lemma is proved.

4. Proof of Theorem 1. Let $S \in \mathcal{L}(X; \mathcal{M})$ satisfy (i) and (ii). Assuming that sup $\emptyset = -\infty$, put, for any t > 0,

$$k(t) = \sup\{||S_t x|| : x \in X, ||x|| \le 1, \text{ the function } \tau \to ||S_t x|| \text{ is approximatively lower semi-continuous at } \tau = t\}.$$

Then, as it follows from Lemma 1, k is a measurable function on $(0,\infty), k(t) \leq h(t) < \infty$ for almost every $t \in (0,\infty)$, and

(ii)' for every $x \in X$ the inequality $||S_t x|| \leq k(t) ||x||$ holds for almost every $t \in (0, \infty)$.

If $x \in X$ is arbitrarily fixed, then, by (i) and (ii)', for almost every fixed $t \in (0, \infty)$ we have

$$||S_t x|| \leqslant k(t) ||x||$$

and

$$||S_{t+s}x|| = ||S_sS_tx|| \leqslant k(s)||S_tx|| \leqslant k(s)k(t)||x||$$

for almost every $s \in (0, \infty)$. Because the first and the last members of the former inequality are two-dimensionally measurable, hence, for every $x \in X$, we have

$$||S_{t+s}x|| \leqslant k(t)k(s)||x||$$

for almost every pair $(t, s) \in (0, \infty)^2$.

For any pair $(t,s) \in (0,\infty)^2$ put

 $n(t,s) = \sup\{\|S_{t+s}x\| \colon x \in X, \|x\| \leqslant 1, \text{ the function } (\tau,\sigma) \to \|S_{\tau+\sigma}x\|$ is approximatively lower semicontinuous at $(\tau, \sigma) = (t, s)$.

Then, by the preceding inequality and by (c) of Lemma 1, we have

$$n(t,s) \leqslant k(t)k(s)$$

for almost every pair $(t, s) \in (0, \infty)^2$. On the other hand, for any $x \in X$, the function $(\tau, \sigma) \to ||S_{\tau+\sigma}x||$ is two-dimensionally approximatively lower semi-continuous at $(\sigma, \tau) = (t, s)$, iff the function $\tau \to ||S_{\tau}x||$ is one-dimensionally approximatively lower semi-continuous at $\tau = t + s$, so that

$$n(t,s) = k(t+s)$$

for every $(t, s) \epsilon(0, \infty)^2$. Hence $k(t+s) \leq k(t)k(s)$ for almost every pair $(t, s) \epsilon(0, \infty)^2$, which, by applying Lemma 2 to $\omega = \log k$, implies that

$$\operatorname{ess\,sup}_{[a,b]} k(t) < \infty$$

for every a and b satisfying $0 < a < b < \infty$.

Let $x \in X$ be arbitrarily fixed. Then for almost every $u \in (0, \infty)$ fixed and almost every $v \in (0, \infty)$ fixed we have

$$||S_{\tau+u}x - S_{\tau+v}x|| = ||S_{\tau}(S_ux - S_vx)|| \le k(\tau)||S_ux - S_vx||$$

for almost every $\tau \epsilon(0, \infty)$. So, by the three-dimensional measurability of the first and the last member, we have

$$||S_{\tau+u}x - S_{\tau+v}x|| \leqslant k(\tau)||S_ux - S_vx||$$

for almost every triple $(\tau, u, v) \in (0, \infty)^3$. From this, using the mapping $(\tau, u, v) \to (\tau, t, s) = (\tau, u + \tau, v + \tau)$, we obtain that the inequality

$$||S_t x - S_s x|| \leqslant k(\tau) ||S_{t-\tau} x - S_{s-\tau} x||$$

holds three-dimensionally almost everywhere on the set

$$\{(\tau, t, s): (t, s) \in (0, \infty)^2, 0 < \tau < \min(t, s)\}.$$

Hence, if for any $x \in X$ and t > 0 we put

 $E_{x,t} = \{s: s \in (0, \infty), (4.1) \text{ holds for almost every } \tau \in (0, \min(t,s))\}$

and

$$E_x = \{t: t \in (0, \infty), \mathbf{m}((0, \infty) \setminus E_{x,t}) = 0\},\$$

then

(4.2)
$$m(0, \infty) \setminus E_x = 0 \quad \text{for every } x \in X.$$

For any $x \in X$, $0 < a < b < \infty$ and $\delta > 0$ put

$$\omega_{x;a,b}(\delta) = \frac{3}{a} \underset{[a/3,2a/3]}{\operatorname{ess sup}} k(t) \sup \int_{a/3}^{2a/3} ||S_{t-\tau}x - S_{s-\tau}x|| d\tau,$$

where sup is taken over $s, t \in [a, b]$ such that $|s-t| \leq \delta$. Then, since

$$\operatorname{ess\,sup}_{[a/3,b-a/3]}k(t)<\infty,$$

the function $\sigma \to S_{\sigma} x$ is Bochner integrable on $[\frac{1}{3}a, b - \frac{1}{3}a]$ and so $t \to \{\tau \to S_{t-\tau} x\}$ is a continuous mapping of [a, b] into the space of X-valued Bochner integrable functions on $[\frac{1}{3}a, \frac{2}{3}a]$, normed by

$$||x(\,\cdot\,)|| = \int\limits_{a/3}^{2a/3} ||x(au)||_X d au.$$

Hence

(4.3)
$$\lim_{\delta \to +0} \omega_{x;a,b}(\delta) = 0$$

for every $x \in X$ and $0 < a < b < \infty$.

If $x \in X$, $0 < a < b < \infty$ and $t_1, t_2 \in [a, b] \cap E_x$, then

$$m([a, b] \cap E_{x,t_1} \cap E_{x,t_2}) = b - a$$

and so, for any $\varepsilon > 0$ there is an $s \in [a, b] \cap E_{x,t_1} \cap E_{x,t_2}$ such that $\omega_{x;a,b}(|t_1-s|) < \varepsilon$ and $|s-t_2| \leq |t_1-t_2|$. By the definition of $E_{x,t}$, for i=1,2, we have

$$||S_{t_i}x - S_sx|| \leq k(\tau) ||S_{t_i-\tau}x - S_{s-\tau}x||$$

for almost every $\tau \in [\frac{1}{3}a, \frac{2}{3}a]$, so that, integrating both parts with respect to τ on $[\frac{1}{3}a, \frac{2}{3}a]$, we obtain

$$||S_{t_i}x-S_sx|| \leqslant \omega_{x;a,b}(|t_i-s|)$$

for i = 1, 2. So

$$\|S_{t_1}x-S_{t_2}x\|\leqslant \omega_{x;a,b}(|t_2-s|)+\varepsilon\leqslant \omega_{x;a,b}(|t_1-t_2|)+\varepsilon$$

and, $\varepsilon > 0$ being arbitrary, we see that

$$||S_{t_1}x - S_{t_2}x|| \leqslant \omega_{x;a,b}(|t_1 - t_2|)$$

for any $x \in X$, $0 < a < b < \infty$ and $t_1, t_2 \in [a, b] \cap E_x$.

Now we can easily define the semi-group $\{T_t: t>0\} \subset \mathcal{L}(X,X)$ satisfying the statement of Theorem 1. Indeed, for any $x \in X$ there is a unique X-valued function Tx strongly continuous on $(0, \infty)$ such that $Tx(t) = S_t x$ for every $t \in E_x$. Consequently, for any $x, y \in X$ and $\alpha, \beta \in R^1$, we have

$$T(\alpha x + \beta y)(t) = S_t(\alpha x + \beta y) = \alpha S_t x + \beta S_t y = \alpha Tx(t) + \beta Ty(t)$$

for almost every $t \in (0, \infty)$ and so, by continuity,

$$T(\alpha x + \beta y)(t) = \alpha Tx(t) + \beta Ty(t)$$

for every $t \in (0, \infty)$. Hence the equality

$$T_t x = T x(t)$$

for $x \in X$ and $t \in (0, \infty)$ defines a family $\{T_t : t > 0\}$ of linear operators of X into X. By (ii)', for any $x \in X$ such that $||x|| \le 1$ and any $0 < a < b < \infty$ we have

$$||T_t x|| \leqslant \operatorname{ess\,sup}_{[a,b]} k(t) < \infty$$

for almost every $t \in [a, b]$ and so, by continuity, this inequality holds for every $t \in [a, b]$. This implies that $\{T_t: t > 0\} \subset \mathcal{L}(X; X)$. At last, if $x \in X$ is arbitrarily fixed, then for almost every fixed $t \in (0, \infty)$ we have $T_t x = S_t x$, $T_s S_t x = S_s S_t x = S_{s+t} x$ for almost every $s \in (0, \infty)$, and $S_{s+t} x = T_{s+t} x$ for almost every $s \in (0, \infty)$, so that $T_s T_t x = T_{t+s} x$ for almost every $s \in (0, \infty)$. It follows by continuity that, for every $x \in X$, $T_s T_t x = T_{s+t} x$ for every pair $(t, s) \in (0, \infty)^2$. Hence $\{T_t: t > 0\}$ is a semigroup and the proof is completed.

REFERENCES

- [1] W. Feller, Semi-groups of transformations in general weak topologies, Annals of Mathematics 57 (1953), p. 287-308.
- [2] E. Kamke, Zur Definition der approximativ stetigen Funktionen, Fundamenta Mathematicae 10 (1927), p. 431-433.
- [3] R. S. Phillips, On one-parameter semi-groups of linear transformations, Proceedings of the American Mathematical Society 2 (1951), p. 234-237.

Reçu par la Rédaction le 24. 2. 1967