RETRACTS OF THE PSEUDO-ARC

BY

J. L. CORNETTE (AMES, IOWA)

Professor B. Knaster has raised [3] the question as to whether the pseudo-arc has a non-trivial retract. Corollary 1 of this paper states that every subcontinuum of the pseudo-arc is a retract of the pseudo-arc. Descriptions and properties of the pseudo-arc may be found in [1], [2], [4], [5], and [6]. Except as noted, terminology used here related to chains is from [1] and [4] and that related to general topology is from [7].

The following theorem by R. H. Bing is of particular importance in the study of the pseudo-arc:

Lemma 1. Suppose \(x_1, x_2, \ldots, x_n \) is a collection of positive integers such that \(h = x_1 \leq x_i \leq x_n = k \) and

\[
|x_i - x_{i+1}| \leq 1 \quad (i = 1, 2, \ldots, n-1).
\]

Suppose also that \(D_1, D_2, \ldots \) is a sequence of chains from \(P \) to \(Q \) such that for each positive integer \(i \), \(D_{i+1} \) is crooked in \(D_i \), the closure of each link of \(D_{i+1} \) is a compact subset of a link of \(D_i \), and the mesh of \(D_i \) is less than \(1/i \). Let \(d(i)_r \) denote the \(r \)-th link of \(D_i \). Suppose further that the subchain \(D_2(u, v) \) of \(D_2 \) is contained in the subchain \(D_1(h, k) \) of \(D_1 \) and the closures of \(d(2)_u \) and \(d(2)_v \) are mutually exclusive subsets of \(d(1)_h \) and \(d(1)_k \) respectively. Then for each integer \(w \) there is an integer \(j \) greater than \(w \) and a chain \(E = [e_1, e_2, \ldots, e_n] \) following the pattern \((1, x_1), (2, x_2), \ldots, (n, x_n) \) in \(D_1 \) such that \(E \) is a consolidation of the links of \(D_j \) contained in \(D_2(u, v) \) and no interior link of \(E \) intersects \(d(2)_u + d(2)_v \).

If \(a \) is a chain and \(\beta \) is a subchain of \(a \), a retraction of \(a \) to \(\beta \) is a transformation \(\gamma \) from \(a \) to \(\beta \) which preserves adjacency such that if \(x \) is in \(\beta \), \(\gamma(x) \) is \(x \). The consolidation of \(a \) induced by \(\gamma \) is the chain to which a link \(y \) belongs if and only if for some \(x \) in \(\beta \), \(y \) is \([\gamma^{-1}(x)]^*\).

The usual description of the pseudo-arc is slightly altered. Specifically, it is assumed throughout that \(P \) and \(Q \) are two points of a compact metric space and that \(W_1, W_2, \ldots \) is a sequence of chains in that space from \(P \) to \(Q \) and \(A_1, A_2, \ldots \) and \(B_2, B_3, \ldots \) and \(C_2, C_3, \ldots \) are sequences of chains such that
(1) \(W_1 \) has nine links and \(A_1 \) is \(W_1 \) (1, 5).

(2) For each positive integer \(i \), the mesh of \(W_i \) is less than \(1/i \) and any link of \(W_i \) that contains a link of \(W_{i+1} \) contains the closure of that link.

(3) For each integer \(i \) greater than 1, \(A_i \) and \(B_i \) have only last links in common, \(B_i \) and \(C_i \) have only first links in common, \(W_i \) is \(A_i + B_i + C_i \) (the order of \(B_i \) is reversed in \(W_i \)), \(A_i \) and \(B_i \) are crooked in \(A_{i-1} \) and have a common pattern in \(A_{i-1} \), \(C_i \) is crooked in \(W_{i-1} \), the first links of \(A_i \) and \(B_i \) are in only the first link of \(A_{i-1} \) (which is also the first link of \(W_{i-1} \)), and the last links of \(A_i \) and \(C_i \) are in only the last links of \(A_{i-1} \) and \(W_{i-1} \) respectively (see figure).

Let \(M \) denote the intersection of \(W_1^*, W_2^*, \ldots \) and let \(R \) denote the intersection of \(A_1^*, A_2^*, \ldots \). It is not difficult to verify that for each positive integer \(i \), \(W_{i+1} \) is crooked in \(W_i \) so that \(M \) is the pseudo-arc. Furthermore, \(R \) is a non-degenerate proper subcontinuum of \(M \) and it will be shown that

Theorem 1. \(R \) is a retract of \(M \).

We must describe a continuous transformation \(\theta \) from \(M \) to \(R \) such that for each \(x \) in \(R \), \(\theta(x) \) is \(x \). In so doing, we will use methods analogous to those of Lelek in [5].

Proof of Theorem 1. We define, by induction, an infinite sequence
\[\{[n(i), V_i, R_i, \theta_i, E_i]\}_{i=1}^\infty \]

such that \(\{n(i)\}_{i=1}^\infty \) is an increasing sequence of integers with \(n(1) = 1 \), and for \(i = 1, 2, \ldots \)

(a) \(V_i \) is a consolidation of \(W_{n(i)} \) which is a chain from \(P \) to \(Q \);

(b) \(R_i \) is an initial subchain of \(V_i \) which contains \(A_{n(i)} \) and (for \(i > 1 \)) refines \(A_{n(i-1)} \) — specifically, \(R_1 \) is \(A_1 \) and for \(i > 1 \), \(R_i \) is the chain such that \(A \) is a link of it if and only if for some link \(A' \) of \(A_{n(i-1)} \), \(A \) is the sum of the links of \(W_{n(i)} \) that lie in \(A' \);

(c) \(\theta_i \) is a retraction of \(V_i \) to \(R_i \) which takes the last link of \(V_i \) to the last link of \(R_i \).
(d) if \(a \) is a link of \(V_{i+1} \), there is a link \(\beta \) of \(R_i \) such that \([\theta_i^{-1}(\beta)]^*\) contains \(a \) and \(\beta \) contains \(\theta_{i+1}(a) \); and

(e) \(E_i \) is the consolidation of \(V_i \) induced by \(\theta_i \).

For any such sequence, \(M \) is the intersection of \(V_1^*, V_2^*, \ldots \) and \(R \) is the intersection of \(R_1^*, R_2^*, \ldots \). In the process, additional sequences, \(\{S_i\}_{i=2}^\infty \) and \(\{T_i\}_{i=2}^\infty \) of chains will appear.

Initial step. Let \(n(1) = 1 \), \(V_1 \) be \(W_1, R_1 \) be \(A_1 \) and let \(\theta_1 \) be the retraction of \(V_1 \) to \(R_1 \) that takes each link of \(V_1 - R_1 \) to the last link of \(R_1 \). Let \(E_1 \) be the consolidation of \(V_1 \) induced by \(\theta_1 \). The parts of conditions (a)-(e) that are applicable are readily verified.

Induction step. Suppose \(p \) is a positive integer and \(\{(n(i), V_i, R_i, \theta_i, E_i)\}_{i=1}^p \) have been defined and satisfy conditions (a)-(e), where applicable. Consider Lemma 1 with the following designations:

(i) \(x_1, x_2, \ldots, x_n \) describes a common pattern of \(A_{n(p)+1} \) and \(B_{n(p)+1} \) in \(R_p \) (such a pattern exists because \(R_p \) contains \(A_{n(p)} \) and \(A_{n(p)+1} \) and \(B_{n(p)+1} \) have a common pattern in \(A_{n(p)} \)).

(ii) \(D_1 \) is \(E_p \), \(D_i \) is \(W_{n(p)+i-1}, i = 2, 3, \ldots \)

(iii) \(D^p_2(u, v) \) is \(C_{n(p)+1} \) and \(D_4(h, k) \) is \(E_p \).

From the specifications in (b) and the definition of \(M \), it follows that \(x_1 \) is 1 and \(x_n \) is the number of links in \(R_p \). The fact that the mesh of \(D_1 \) is possibly not less than 1/1 is not significant. From (b), (c) and (e) it follows that the first link of \(E_p \) contains the first link of \(V_p \), and from (e) and (e) it follows that the last link of \(E_p \) contains the last link of \(V_p \). From (a) it follows that the first and last links of \(V_p \) contain, respectively, the first and last links of \(W_{n(p)} \). From the definition of \(M \), the first and last links of \(W_{n(p)} \) are disjoint and contain, respectively, the closures of the first and last links of \(C_{n(p)+1} \). We conclude that the closures of the first and last links of \(C_{n(p)+1} \) (\(d(2)_u \) and \(d(2)_v \)) are mutually exclusive subsets of the first and last links of \(E_p \) (\(d(1)_h \) and \(d(1)_k \)) respectively. The remainder of the hypothesis of Lemma 1 is easily verified.

Consequently, there is an integer \(n(p+1) \) greater than \(n(p) \) and a chain \(T_{p+1}^\prime \) following the pattern \((1, x_1), (2, x_2), \ldots, (n, x_n)\) in \(E_p \) such that \(T_{p+1} \) is a consolidation of the links of \(W_{n(p+1)} \) contained in \(C_{n(p)+1} \) and no interior link of \(T_{p+1} \) intersects an end link of \(C_{n(p)+1} \). Let \(R_{p+1}^\prime \) be the chain such that \(\Lambda \) is a link of it if and only if for some link \(\Lambda' \) of \(A_{n(p)+1} \), \(\Lambda \) is the sum of the links of \(W_{n(p+1)} \) that lie in \(\Lambda' \). Let \(S_{p+1} \) be the chain such that \(\Lambda \) is a link of it if and only if \(\Lambda \) is the first link of \(T_{p+1} \) or for some link \(\Lambda' \) of \(B_{n(p)+1} \) other than the first link, \(\Lambda \) is the sum of the links of \(W_{n(p+1)} \) that lie in \(\Lambda' \). Let \(S_{p+1} \) be the chain such that \(\Lambda \) is a link of it if and only if \(\Lambda \) is the first link of \(T_{p+1} \) or for some link \(\Lambda' \) of \(B_{n(p)+1} \) other than the first link, \(\Lambda \) is the sum of the links of
$W_{n(p+1)}$ that lie in $\cal A'$. Because both $A_n(p+1)$ and $B_n(p+1)$ have the pattern $(1, x_1), (2, x_2), \ldots, (n, x_n)$ in R_p, R_{p+1} has the same pattern in E_p. Let V_{p+1} be $R_{p+1} + S_{p+1} + T_{p+1}$ and let θ_{p+1} be the retraction of V_{p+1} to R_{p+1} that takes the r-th link of S_{p+1} and the r-th link of T_{p+1} to the r-th link of R_{p+1}. Let E_{p+1} be the consolidation of V_{p+1} induced by θ_{p+1}.

(a) V_{p+1} is obviously a consolidation of $W_{n(p+1)}$. The first link of V_{p+1} is the first link of R_{p+1}, contains the first link of $W_{n(p+1)}$ and therefore contains P. Q belongs to the last link of $W_{n(p+1)}$ which is contained in the last link of $C_{n(p+1)}$ and Q must then belong to a link of T_{p+1}. Because $x_1 = 1$, the first link of T_{p+1} is a subset of the first link of $C_{n(p+1)}$; from the conclusion of Lemma 1, no interior link of T_{p+1} intersects an end link of $C_{n(p+1)}$. Consequently, the last link of T_{p+1}, which is the last link of V_{p+1}, contains Q. It follows that V_{p+1} is a chain from P to Q.

(b) The specifications are contained in the definition of R_{p+1} and imply that R_{p+1} refines $A_n(p)$ and contains $A_{n(p+1)}$. That R_{p+1} is an initial subchain of V_{p+1} follows from the definition of V_{p+1}.

(c) By definition, θ_{p+1} is a retraction of V_{p+1} to R_{p+1} and because x_n is the number of links of R_p, θ_{p+1} takes the last link of T_{p+1} (which is the last link of V_{p+1}) to the last link of R_{p+1}.

(d) Suppose a is a link of V_{p+1}. If a is the r-th link of R_{p+1} or the r-th link of T_{p+1}, each of a and $\theta_{p+1}(a)$ (which is the r-th link of R_{p+1}) is a subset of the x_r-th link β of R_p and since $\theta_p(\beta)$ is β, $[\theta_p^{-1}(\beta)]^*$ contains a and β contains $\theta_{p+1}(a)$. If a is the r-th link of T_{p+1}, let β denote the x_r-th link of R_p. Then $[\theta_p^{-1}(\beta)]^*$ is the x_r-th link of E_p and must contain a, and β contains the r-th link of R_{p+1} which is $\theta_{p+1}(a)$.

(e) Satisfied by definition of E_{p+1}.

This completes the induction step.

Description of θ. For each point x of M and positive integer i, let $K_i(x)$ be the link or links (at most two) of v_i containing x, and let $J_i(x)$ be the sum of the elements of $\theta_i[K_i(x)]$. For x in M and $i = 2, 3, \ldots, J_i(x)$ is either a link of R_i or the sum of two intersecting links of R_i, and because R_i refines $A_{n(i-1)}$, the diameter of $J_i(x)$ is less than $2/(i-1)$. If a is in $K_{i+1}(x)$, there is a link β of R_i such that $[\theta_{i}^{-1}(\beta)]^*$ contains a and β contains $\theta_{i+1}(a)$, and there is a link λ of $\theta_i^{-1}(\beta)$ that contains x and hence belongs to $K_i(x)$. Then $\theta_i(\lambda)$ contains $\theta_{i+1}(a)$ and we conclude that $J_i(x)$ contains $J_{i+1}(x)$.

Consequently, for x in M, $J_1(x), J_2(x), \ldots$ is a monotonic sequence of compact sets whose diameters converge to zero and we define $\theta(x)$ to be the one point common to all of $J_1(x), J_2(x), \ldots$
θ is a retraction. If x is in R, for $i = 1, 2, \ldots, K_i(x)$ includes one or two links of R_i so that x is in $J_i(x)$. Consequently, if x is in R, $\theta(x)$ is x.

θ is continuous. Suppose ε is a positive number. Let $i > 1$ be an integer such that $3/(i-1) < \varepsilon$, and let δ be the Lebesgue number of the open cover V_i of M. Suppose x and y belong to M and the distance from x to y is less than δ. Then some link of V_i contains both x and y so that $K_i(x) + K_i(y)$ has at most three links and the diameter of $J_i(x) + J_i(y)$ is less than $3/(i-1) < \varepsilon$. Since $\theta(x)$ is in $J_i(x)$ and $\theta(y)$ is in $J_i(y)$, the distance from $\theta(x)$ to $\theta(y)$ is less than ε. It follows then that θ is continuous and the proof of Theorem 1 is complete.

Corollary 1. Every subcontinuum of M is a retract of M.

Suppose S is a subcontinuum of M. If S is degenerate or M, S is a trivial retract of M. Suppose then that S is a non-degenerate proper subcontinuum of M. From Theorem 15 of [1], there is a homeomorphism H from M to M such that $H(M)$ is M and $H(R)$ is S. Then the composition of H restricted to R and θ and H^{-1} is a retraction of M to S.

The author is indebted to Dr. A. Lelek for certain critical remarks that led to improvements in the proof of Theorem 1.

REFERENCES

IOWA STATE UNIVERSITY, Ames, Iowa

Reçu par la Rédaction le 20. 12. 1966;
en version modifiée le 22. 8. 1967