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1. Introduction. Recently, the author posed the following problem.
Does there exists a complete non-atomic Boolean algebra which has
a o-complete prime ideal? It appeared as problem P 461 in the problem
section of the journal Colloquium Mathematicum 14 (1964), p. 148.

In the present paper® we shall give a partial answer to this question.
First of all we shall show that if 4 is a non-atomic complete Boolean
algebra such that every mutually disjoint subset of # has a cardinal
which is not measurable, then every prime ideal is not o-complete. We
recall that a cardinal « is called measurable whenever the Boolean algebra
of all subsets of a has a non principal o-complete prime ideal. Further-
more, we shall single out a special class of non-atomic complete Boolean
algebras for which it can be shown directly that their prime ideals are
not e-complete.

2. The existence of g-complete prime ideals. For terminology and
notation not explained in this paper we refer to [7].

In this paper we shall only consider non degenerate Boolean algebras.
The elements of a Boolean algebra # will be denoted by a,b,... with
or without subscripts; the zero element by 0 and the unit element by 1.
The Boolean operations of join and meet will be denoted by v and A,
respectively. The unique complement of an element ae¢% will be denoted
by —a. "

An ideal I = Z is called o-complete whenever A < I, A is count-
able and sup A exists implies sup A «I. An ideal which is not ¢-complete
will be called o-incompiete. An ideal I is called prime whenever a A bel
implies ael or bel. An ideal is prime if and only if it is maximal, i.e.,
if it is not properly contained in an ideal. An element aeZ is called an
atom whenever 0 << b < a implies b =0 or b = a.

* Work on this paper was supported in part by grant No. GP-6111 from the
National Science Foundation.
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If the Boolean algebra # has an atom a, then the prime ideal [/
consisting of all » with b A @ = 0 is obviously ¢-complete, and, in fact
is complete, i.e., for every non-empty subset A < I if sup A exists, then
sup A eI. More precisely, a complete Boolean algebra # has a complete
prime ideal if and only if £ has an atom. Hence, if # is non-atomic and
complete it is natural to ask whether Z has a o-complete prime ideal.
Before we shall give a few answers to this question we shall first present
a few preliminaries and a lemma.

Let # be a Boolean algebra and let I = # be an ideal in 4. Then [
is called dense in # whenever for every 0 < ae# there is an element
bel such that 0 << b < a. In that case, however, I has a stronger prop-
erty namely

(*) a =sup(b:bel and b < a)

for all ae#. Indeed, if I is dense and (*) does not hold for some ae#,

then there is an element a, < a such that bel, b<a implies b < a,,

and so (a—a;)Ab = 0 for all bel, which is impossible since I is dense.
We shall now prove the following lemmas:

LEMMA 1. If # is a nmon-atomic Boolean algebra, then every prime
ideal I < # is dense.

Proof. If the prime ideal I = # is not dense in #, then there is
an element 0 < ae# such that a A I = 0. Since # has no atoms it fol-
lows that there exists an element 0 < b < a, and so I v I, where I is
the principal ideal generated by b, is an ideal which properly contains I;
contradicting the maximality of I and the proof is finished.

The main result of the paper is given in the following theorem:

THEOREM 1. Assume that there are no measurable cardinals and assume
that # is a non-atomic complete Boolean algebra. Then every prime ideal
in & 1s o-tncomplete.

Proof. Assume on the contrary that there does exist a Boolean
algebra % which is non-atomic, complete and which has a ¢-complete
prime ideal I. From Lemma 1 it follows that 7 is dense in #&. Let {a,: ceZ}
be a maximal disjointed (i.e., o; # o, implies a, A a,, = 0) subset of I.
Then sup(a,: ceX) = 1. Indeed, if sup(a,: 6eX) = a, # 1, then I being
dense there is an element ael such that 0< @ < —a, which contradicts
the maximality of {a,: ceX}. We shall now prove that X is measurable.
To this end, we set XeJ whenever X < X and sup(a,: ceX)el. It is
easy to see that . is an ideal of the algebra of all subset of X which is
proper since sup(a,:oeX) = 1¢I. Furthermore, a,el implies {o}edJ
for all oeX. Finally it is easy to check that I is prime and ¢-complete
implies J is prime and o-complete. Thus X is measurable, which con-
tradicts the hypothesis and the proof is finished.
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Let # be a Boolean algebra. Then by ¢(#) we shall denote the smal-
lest cardinal with the property that the cardinal of every disjointed
system in & is bounded by ¢(#). With this definition the following result
18 an immediate consequence of the proof of Theorem 1:

COROLLARY 1. Let # be a non-atomic complete Boolean algebra such
that ¢(%) is non-measurable. Then every prime ideal in B is o-incomplete.

Remark. It is known that it is consistent with the axioms of set
theory to assume that measurable cardinals do not exist and so it is
also consistent to assume that every prime ideal in a non-atomic complete
Boolean algebra is o-incomplete. It was shown by Ulam [9] that all the
cardinals less than the first inaccesible cardinal are non-measurable
and more recently Tarski [8] proved the interesting result that even
a large number of inaccessible cardinals are non-measurable. Thus except
possibly for very exceptional complete non-atomic Boolean algebras
the prime ideals in such algebras are o-incomplete.

We do not know whether the existence of a measurable cardinal
implies the existence of a complete non-atomic Boolean algebra which
has a o-complete prime ideal.

3. Boolean algebras with continuous resolutions. Let & be a Boolean
algebra and let 0 < aeZ#. Then a is said to have a continuous resolution
whenever there is a mapping ¢t — a(t) of 0 <t <1 into & such that

0 = a(0) =inf(a(t): 0<t<1); a=a(l)=sup(a(t):0<1t<1);
0 <t, <1, <1 implies a(f,) < a(f,); and for all 0 < ¢, <1,
a(ty) = sup(a(t): 0 <t < t,) =inf(a(t): t,< ¢ < 1).

A Boolean algebra % is said to have a continwous resolution when-
ever its unit element has a continuous resolution. In that case, every
element of # has a continuous resolution. Of course, if some element
0 < aeZ with a # 1 has a continuous resolution, then # need not have
a continuous resolution.

Boolean algebras with a continuous resolution have the following
property:

THEOREM 2. If a Boolean algebra # has a continuous 1esolution,
then every prime ideal of B is o-incomplete. In particular, B is non-atomic.

Proof. Let {e(?):0<?t<1} be a continuous resolution of # and
let I =« # be a o-complete ideal. Then the set

E={1:0<t<1 and e(t)el}

is non-empty (0e¥) and is bounded from above by 1, and so ¢, = sup k&
exists. Since {e(f): 0 <t <1} is a continuous resolution and I is ¢-com--
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plete we obtain from

e(to) = sup(e(ta) : tn 1 1)
that e(f,)el. On the other hand, since I is prime we have that —e(t)el
for all ¢ >1t,, and so if ¢, | ¢, we see that

—e(ty) = sup(—e(tn) : ta ¥ &) el.

Hence 1 = e(t,)v —e(t,) el and a contradiction is obtained.

It # would have an atom, then it would also have a complete prime
ideal. This completes the proof of the theorem.

We recall that a point 2 of a topological space X is called a P-point
whenever the intersection of every countable family of neighborhoods
of # is a neighborhood of ». Every discrete point of a topological space
is of course a P-point. Furthermore, if S(%#) denotes the Stone repre-
sentation space of a Boolean algebra %, then xeS (%) is a P-point if and
only if the corresponding prime ideal in % is o-complete. The following
result is then evident:

COROLLARY 2. The Stone representation space of a Boolean algebra
which has a continuous resolution has no P-points.

In the next section we shall single out an important subeclass of
Boolean algebras with continuous resolutions.

4. Hyperstonian Boolean algebras. Let # be a Boolean algebra.
A real function u defined on # is called a state whenever u has the fol-
lowing properties: u(a) = 0 for all ae#; u(a v b) = u(a)+ u(b) for all
a,beZ satisfying a A b = 0; and u(l) #0. A state is called stricily
positive whenever u(a) =0 implies a = 0. Every state is monotone
increasing and a strictly positive state is strictly increasing.

A state u is called a measure, whenever u is countably additive,
ie., a, | 0 ({a,} is decreasing and infa, = 0) implies u(a,) J 0. A state u
is called pure whenever 0 <»< u and » is a measure implies » = 0,
Every state can be written uniquely as a sum of a pure state and a me-
asure.

A state u is called normal, whenever a, | 0 ({a,} is directed downwards
and inf a, = 0) implies u(a,) | 0. Every normal state is a measure.
A measure p is called singular whenever 0 < » << u and » is normal implies
v = 0. Every state u can be written uniquely as the sum of a pure state
and a singular measure and a normal state.

Following Dixmier [2], we shall call a complete Boolean algebra
hyperstonian whenever for every 0 < ae# there is a normal state u on %4
such that u(a) + 0. The connection being that a compact Hausdorff
space which is hyperstonian in the sense of Dixmier is the Stone repre-
sentation space of the hyperstonian Boolean algebra of all its open and
closed subsets.
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It is our purpose to show that non-atomic hyperstonian Boolean
algebras have continuous resolutions. Before we shall turn to the proof
of this result we shall first present some preliminary results.

Let % be a Boolean algebra and let x4 be a state defined on #. Then a
is called a p-atom whenever u(a) >0 and 0 < b < a implies either u(a)
= u(b) or u(b) = 0. If a is an atom of # and u(a) > 0, then a is a y-atom
of #. Of course a u-atom need not be an atom. If u is strictly positive,
however, then an element is an atom if and only if it is a g-atom. In this
direction we have also the following less trivial result:

LEeMMA 2. If # is a complete Boolean algebra and if u is a normal
state defined on %, then a is a u-atom implies a is an atom. In particular,
the normal states on a non-atomic complete Boolean algebra are free of atoms.

Proof. Let u be a normal state and let 0 < aeZ be a p-atom. Let
=sup(b:0<b<a and u(b) = 0).

Then, since p is normal, u(a,) = 0. We shall prove that a—a, 1s an atom
of 4. From pu(a) >0 and p(a,) = 0 it follows that a—a, # 0. Further-
more, if 0 < b<a—a,, then u(b) = u(a) since a is a p-atom. Thus
pla—a,—b) = 0 implies a—a,— b < a,, i.e., b = a—a,. This completes
the proof.

Let Z be a Boolean algebra and let u be a state defined on #. A map-
ping t - a(t) of 0 <t<1 into # is called a p-resolution of a whenever
a:('O) =0; e(1)=1; 0<t,<t,<1 implies a(t) <a(t,); and wu(a(?)
= tu(a) for all 0 < t< 1. A Boolean algebra is said to possess a u-reso-
lution if its unit element has a p-resolution.

The following important theorem concerning the existence of a u-reso-
lution for a Boolean algebra is due to Liapounoff [4]. A short proof of
this result is contained in [3].

TurorEM 3 (Liapounoff). If # is a o-complete Boolean algebra and p
is a measure which is free of atoms, then there exists a u-resolution of 2.

We are now in a position to prove the following result:

THeorREM 4. Let # be a non-atomic hyperstonian Boolean algebra.
Then # has a continuous resolution.

Proof. We shall first show that if a non-atomic hyperstonian Boolean
algebra has a strictly positive normal state u, then there exists a conti-
nuous resolution of #Z. To this end, observe that since # has no atoms,
Lemma 2 implies that there are no w-atoms, and so by Liapounoff’s
theorem there exists a u-resolution {e(f): 0 <<t < 1} of the unit element
of #. Then it is easy to see that the strict positivity of u implies that
{e(t): 0 <<t< 1} is a continuous resolution of #. Indeed, it is only
necessary to observe that in this case a,t and u(e,)t u(a) implies
supa, = a and, similarly, a, | and u(a,) | u(a) implies a, | a.
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In the general case # has sufficiently many normal states but of
course none of them may be strictly positive. Let {u,: veT} be maximal
disjointed system of normal states satisfying u,(1) = 1 for all 7eT. Then
for every = we define

—a, = sup(a: p,(a) = 0).

Then wu,(a,) =1 and u, is strictly positive on the ideal generated
by a,. Furthermore, the maximality of the system {u, : veT} implies that
sup(a,: rel) = 1. Thus from what we have just shown it follows that
for every 7 there exists a continuous resolution

{e;(1): 0 <t <1} of a,.
Then we shall prove that the system
{e(t) = sup (e (t): ve), 0 <E<1}

is a continuous resolution of #. To this end, we first observe that ¢(0) = 0,
and e(1l) = sup(a,:7el) ==1. Let 0 <t,<1. Then

sup (e(f) : 0 < 1< 1) > e, ()
for all reT and for all 0 <¢< t,, and so
e(ty) = sup(e(?) : 0 <6< 1y) = e, (1)
for all 7e7 which implies that
e(ty) = sup(e(t): 0 <1< ty).

Let 0 <{,<1 and let a = inf(e(t): {,< t<1). Then a = e(t,), and
since e(f) A a, = e,(t) for all 7 and all 0 <t<1 we obtain e ({,) < ana,
< e.(1) for all {,<i<1. Thus e,(l,) < ana, <e.(t,) implies e, (t,) = ana,
for all 7. Then, finally, sup(a,: t7eT) = 1 implies that

e(ty) =sup(ana,:tel) = a,

and the proof is finished.

Using the results of the preceeding section we obtain the following
corollaries of Theorem 4.

THEOREM b. Every prime ideal in a non-atomic hyperstonian Boolean
algebra is o-incomplete.

For hyperstonian topological spaces we have the following result:

THEOREM 6. If X is a compact Hausdorff hyperstonian space without
discrete points, then X has no P-points.

In Lemma 2 we showed that on a mnon-atomic complete Boolean
algebra the normal states are free of atoms. In this direction we have
the following result for measures:
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THEOREM 7. If a Boolean algebra has a continuwous resolution, then
every measure has no atoms. In particular, every measure on a non-atomic
hyperstonian Boolean algebra is free of atoms.

Proof. Let x4 be a measure on a Boolean algebra Z possessing a con-
tinuous resolution and let aye % be a u-atom. Then the set I — {a: u(ana,)
= 0} is a o-prime ideal which contradicts Theorem 4. Thus w has no
atoms and the proof is finished.

Remark. It seems tempting to conjecture that on every non-atomie
hyperstonian Boolean algebra every measure is normal (P 631). In this
direction some results have been obtained by the present author for the
theory of Riesz spaces (see [5] and [6]). These results can immediately
be translated into theorems for the theory of states on Boolean algebras
when applied to the Riesz space of the finitely valued place function
(see [1]) on a Boolean algebra. We shall quote the following results
which are related to the conjecture stated above:

(1) Let B be any Boolean algebra and let u be a measure on B. Then
there exists a dense ideal I, = B such that w is normal on 1,, and equiva-
lently, the null ideal N, = {a: u(a) =0} of every singular measure is
dense, and equivalently, every strictly positive measure is normal.

(i) The following two statemenis are equivalent: ,

(a) Kvery measure defined on the Boolean algebra of all subsets of
@ non-empty set X for which every finite subset of X is a set of measure zero
18 tdentically zero.

(b) For all complete Boolean algebras every wmeasure is normal.

The reader should observe that (a) of (ii) implies that every cardinal
is non-measurable. Indeed, the statement (a) if restricted to two-valued
measures is precisely the statement: “Every cardinal is non-measurable”
as defined in section 1 of this paper. It was shown, however, by Ulam
in [9] that if the continuum hypothesis holds, then the following two
statements are logically equivalent: (i) Every cardinal is non-measurable.
(if) The statement contained in (a).
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