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0. Introduction. In this paper we give some remarks on positive
formulas and topological compact relational structures. Theorem 1.3
says that any structure is upward positively pure in its compactifications.
Theorem 2.1 says that for some unary algebras there are compact elemen-
tary extensions. Theorem 3.1 says that each positive formula is preserved
by inverse limits of systems of topological compact structures. This has
been remarked but not published about three years ago by Yu. L. Erfov
for the case of finite structures. We also give examples to show the necessity
of the conditions in those theorems. This paper is related to [5], where
the Cech-Stone compactifications were applied to algebras with unary
operations. For other considerations on compact general algebras see
also [1].

The terminology and notation of [6] and [7] will be used in this
paper. For all topological notions see [2].

A relational structure (A, Ry.p will be called topological (completely
reqular) [compact] if A is a topological Hausdortf space (completely re-
gular) [compact] and each R, is a closed subset of the topological power
A", where 7, is the rank of R;. The similarity type, that is, the mapping
r: T'— o\ {0}, is often arbitrary but fixed. Sometimes topological algebras
are treated as topological relational structures with the n-ary operations
converted in the standard way into (n-1)-ary relations and, of course,
the algebraic operations are supposed to be continuous.

Let A = (A, R)wr and B = (B, Swr be topological structures.
B will be called a topological extension of 2 if and only if A is a dense
subset of B and §; = R, for all te7. B is said to be a topological compacti-
fication of 2 i1, moreover, B iz a compact space (a topological extension
of an algebra need not be an algebra).
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1. Topological extensions. Notice the following elementary fact:

ProrosirioNn 1.1. Ewvery topological completely reqular structure U
has a compactification B which is mawximal, that is, every other compacti-
fication of A is a continuous homomorphic (1) image of B by a homomorphism
which s the identity on 2.

Remark. This proposition does not apply to algebras in general
(that is, sometimes 2l is but B can not be an algebra) except if A has only
unary operations, since then the Cech-Stone compactification works
(see [5]). Moreover, there are algebras which have no equational compactifi-
cations (see [6], § b).

THEOREM 1.2. Let A = (A, R)y.r be a topological compact structure
and @ (2, ..., By_q) a positive formula. Then the set

{<gy ey tn_D: U l=glag, ..., a,_,]}

is a closed subset of A",

Proof. We proceed by induction with respect to ¢ and apply the
well known facts that the logical operations v, H, A and V correspond
to union, projection and intersections respectively.

Let us recall that 2l is upward positively pure in B if and only if
2 = B and each positive formula with constants in 2 which is satisfiable
in 2 is also satisfiable in B. (For more informations on this notion see [7].)

TureoreM 1.3. If U is & topological structure and B is any topological
compactification of AU, then A is upward positively pure in B.

Proof. We proceed by induction on ¢. For atomic formulas or for
formulas of the form ¢ A y, ¢ v v or Hap, where @ and vy already have
the required property, the conclusion is visible. We have still to con-
sider 7 = Vayp(@y, ..., 4,). If y is satisfiable in 2, that is, there are
Ay, ...y aye A such that

A l:'X[ali cery (y],

then we have 2l |=¢[ay, a4, ..., a,] for each a,eA and by the inductive
supposition we also have B |=¢[a,, a,, ..., a,]. Hence the set

{0eB: B [=¢[b, a,, ey O]}

is dense in B, and by Theorem 1.2, it is closed and thus equals B, q. e. d.
Next, we add two examples which show that compactness of B in
1.3 and 1.2 is essential and 2 needs not be downward positively pure

in B.

() We recall that a homomorphism f: (A, Ri>tr — <B, Stitr is a mapping f:
A — B such that, for every teT and Ay, ..osared, if {ay, ..., arp € By, then (f(a,), ...,
seey f((lrt)> ESt .
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. Example 1.4. Let 2 be the multiplicative group of real numbers
without zero, and B the multiplicative semigroup of all real numbers.
Then B is a topological extension of 2, but 2 is not upward positively
pure in B (e.g. Valyxy = 1).

Example 1.5. Let A = (N, G, F), where F and G are binary rela-
tions on the set N of all natural numbers with the discrete topology
defined by F(x,y) < f(x) =9y and G(x,y) < g(x) =y, where f and ¢
are two functions such that

(f, 9): N "2 N x N\{(#, @): wN}.

Then 2.has no compactification in which it is downward positively
pure (see [7], Example 21, due to C. Ryll-Nardzewski).

2. The Cech-Stone compactifications. In this section we define

a certain class of discrete algebras for which the Cech-Stone compactifi-
cations are elementary extensions.

Let K be the class of all algebras 2 = {4, f) such that f is unary
operation and none of the functions f,f*,...,f" ..., where f"*!(x)
= f(f"(«)), has a fixed point.

ToeorEM 2.1. For every e K the Cech-Stone compactification of 2
is an elementary extension of 2.

For the proof of this theorem we need some lemmas.

LeMmA 2.2. (C. Ryll-Nardzewski). For any e K there are sets A,,
A, Ay suchthat Agw Ay Ay = A, A;~n Aj =0fori =4 and f(A;)) ~ A
=0 for ,j < 3.

The proof is elementary.

Let F be the family of all sets of the form

{we(BA)”: Tmy = f"(a)y ..., Tm,_, = f*"1(a) where
a-eﬁA\{al, ceey a,-}, Pyyeony a,eA,j < w}
and let D be the family of all sets of the form

n ’."k
(1) D=U (F:\U Fr), where Fp, FeF.
k=1 =1

LEMMA 2.3. The family D is closed under finite unions, complements
and cylindrifications €; (i < o), defined as follows:

€:(D) = {xe(BA)”: there is an yeBA such that x(i|y)eD},

where x(i|y) denotes the sequence obtained from x by substituting y for x;
on the i-th place.
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Proof. For each 0 <n < o, f* has no fixed points, hence, using
Lemma 2.2, we have three sets 4,, A, and A4, such that f4 = AouAlu
v A, andA@nA = 0 for ¢ # Js 4 j < 3. Let befA. Then be A; for some
i < 3;say bs A,. Then f*(b)ef™(4 o) € A, v dy,but 4, ~ (4, v 4,) = 0,
thus f”(b ) # b for all beﬁA From this it immediately follows that F
is closed under finite non-void intersections.

In the representation of the set DeD of the form (1) we can assume
that

T
Fk =2 zU Fkl°
=1

Whence it is almost obvious that D is closed under finite unions and
since F is closed under finite non-void intersections, D is also closed under
complements. To show that D is closed under operations %; (i < o) let
us observe that

r r
C(F\U F,) = €(F)\U (T, ~ ),
n=1 Nn=1
where
p 0 if €(Fy) =7F, and €;(F) = F,
1, ==
" (fA)” in  the other cases.

Whence, using the fact that €;(F)eF for F ¢F, we see that D is closed
under operations %; (1 < w), q. e. d.
For all j < o we put

Xj = {we(BA)*: v = ay, for all k + j, k < o},

where ajeA.
LEMMA 2.4. If X; ~ D # 0 for some DeD, then X; ~ D ~ A” 0.
Proof. For every FeF the projection p;(F ~ X;) contains either
all points from fA but finite number from A or there is only one point
belonging to A. Hence if D = F~\ (J Fy, then the conclusion of Lemma 2.4
k=1

follows from the fact that

2i(D ~ X;) = p;(F ~ X;) \kL_J1 Pi(Fr ~ X;).

Proof of Theorem 2.1. Let 2 e K. Then 2 is infinite. Let us observe
that the sets defined in g4 = (B4, f*> by atomic formulas belong to F.
Since D is closed under finite unions, complements and cylindrifications
% (1 < o), the sets defined by elementary formulas in A belong to D.
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Thus, in view of a theorem of Tarski and Vaught ([4], Theorem 1.10),
Theorem 2.1 follows from Lemma 2.4 (2).

3. Inverse limits of topological relational structures. Now we are
going to prove a generalization of the result of Erfov mentioned in the
introduction.

TurEorREM 3.1. If U,y 7y, 1> is an inverse system of topological com-
pact structures such that m; are continuous homomorphisms onto, and B
is the inverse limit of this system, then for each positive formula ¢ and
boy.o.sby_1eB we have

B l=¢lboy -y ba_s]

if and only if U |=@[m;(be)y ..., 7 (by_y)] for each iel, where n; is the
natural projection of B onto U,;.
In particular, positive sentences true in all 2A; are true in B.

Proof. If B |=g¢[by, ..., by_,], then, by a theorem of Marczewski
[3], Ui |=g@[mi(by)y ..., w;(by_,)] for each positive formula and all iel.

We prove the converse by induction. The thesis is visible if @ 18 an
atomic formula, and it is almost obvious if ¢ is of one of the forms Y1 AY,,
Y1 VvV y, and Vo, yp.

We have still to consider the formula

¥ = Hmn"/’.(moa oey @p_yy Tn),

where ¢ has the required property. Let us suppose that we have
Ui |= @ [7i(by), ..., wi(bn_y)] for some b, voryby_1eB and all iel. Let us
denote by F; the set

Iﬂi = {(”eAi: Q[z |: W[ﬂi(bo); veey ﬂi(bn—l)r a]}

Since U; |=p[7i(by), ..., mi(by_,)], we have F; 0, and, by Theorem 1.2,

F;is a compact subset of 4;. Moreover, if ¢ < J, then m;; induces a mapping

0t F,-i—nﬁ F;. Thus we obtain an inverse system of topological compact

spaces {Fy, i, I). Let F be the inverse limit of the system {Fyi, i, I).
It is a subset of B. Since each F;is non-void and compact, F is 8o as well.
Let bel. Then we have

2, = w[7:(by), eony Wi(bp_q), 7;i(b)]

for all iel. So, by the inductive supposition, B |=y[b,, s oy Uy 3 Bl
whence B |= Ha,yp, q.e. d.

(®) A structure 8;, which is an extension of B,, is an elementary extension of B,
if and only if the existence of an aeB, such that B, l=¢lay, ..., an_1, a] implies
the existence of a b e B, such that 231 =e@lag, ..., an_1, b] for every natural number =,
for every formula ¢ with n+ 1 free variables and for every agy, ..., an_1€B,.
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The following example shows that the assumption of compactness
of A; in Theorem 3.1 is essential.

Example 3.2. Let 2, = (A4, f.>,n < o, where
Ay = {0, k,r>: k< n,r < ow}v {{n,s,0>:8 =>n},
and f, is a unary operation over A4, defined by
n,k,r+1> i k<mn,

a(<Wy Iy -
Sal A l ny, kyr) if k=n.

Let m,,.,;» be a mapping defined by the following conditions:

o . onto
1" 7y pgnt An+1 — Aa;

{n, kyry ik <mn,
i, k,0> if k>=mn.
Let B be the inverse limit of the system <2, 7,7 <j < w). It is
visible that 2, |= Hz[f(x) = «] for each n < w, but B |=Vz[f(x) # x].
Let us remark that in this example each 2, is atomic compact (see

[6]) and that we do not know any natural purely algebraic assumption
which could replace the topological compactness in Theorem 3.1.

2° mppa(n+1,k,15) = ‘
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