COLLOQUIUM MATHEMATICUM

VOL. XIX 1968 FASC. 1

ON THE NUMBER OF INDEPENDENT ELEMENTS
IN FINITE ABSTRACT ALGEBRAS
WITH TWO BINARY SYMMETRICAL OPERATIONS

BY

J. PLONKA (WROCLAW)

0. In this paper we consider abstract algebras which have at least
two binary symmetrical algebraic operations. Commutative rings and
lattices may serve as examples of such algebras. Our main result is con-
tained in section 2, where we evaluate the minimal number of elements
which an algebra of our class with a given number of independent elements
may possess. Problems of this kind were suggested to me by Professor
E. Marczewski and were solved in previous papers [2] and [4] for unary
algebras and for algebras having one binary operation.

We adopt the terminology of [1] where, in particular, the definition
of independence may be found. For shortness, we shall say constant instead
of algebraic constant, and essentially n-ary operation instead of n-ary oper-
ation depending on each its variable.

1. We start with a constructive description of some simple classes

of abstract algebras defined axiomatically, which we shall use in the
sequel.

Let € = (X; 4+, -, 0)bean algebra such that 0 is an algebraic constant
and the fundamental operations satisfy the equations

(1) r+y =y+aw,
(2) zY =y,
B) (@+y)+z=(@y) 2= (+y)2e=(z-y)+z =0+ =02 =0.
(i) Every algebra € is of the following form: X is the union of two
- disjoint sets A and B, there exist two mappings f and g each of them mapping

the set A X AN\ {(w, ®>: we A} into the set B and such that f({z,y>)=f({y, =),
gz, y>) = gy, @>) and 0eB. The algebraic operations -~ and - are
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defined by
fa,y) of a« #y,x,yed,

x-+ty =
< 0 otherwise,

g(lz,y>) if @ Fy,v,yed,
XY =
0 otherwise.

Conversely, every algebra constructed in this way salisfies equations
(1), (2) and (3).

Proof. Let B be the set of all elements « such that x4y = z-y = 0
holds for every y, and let A be the complement of B. Now it is clear how
to define the mappings f and g to get the wanted result. The converse
part can be checked without any difficulty.

(ii) An algebra € is a free algebra with n free generators in the equational
class defined by (1), (2) and (3) if and only if the set A occurring in (i) has
n elements, f and g are both one-to-one mappings and the images of f and g
are disjoint and exhaust the set B {0}.

The easy proof may be left to the reader.

We shall denote by €™ the free algebra described in (ii).

Now let 2 = (X; +, -) be an algebra whose fundamental operations
satisfy equations (1) and (2) and also the following:

(4) (@+y)+2 =2+ (y+2),

(H) (@-y) e =x(y-2),

(6) r+y+z=wyz=(@+y)z=(0y+s
(7) v+ =222,

(8) vXt+Y =00y =0Ty,

(Let us note that, as observed by K. Urbanik, the algebra 2 can be
described equivalently as follows: let -y be a commutative and asso-
ciative operation defined on X, satisfying the conditions x?yz = ayz and
x* = x2, Define the second binary operation by @4y = a*-y% It can be
checked that the two descriptions of 2 are equivalent.)

(iii) Every such algebra 2 is of the following form: the carrier X 1is
the union of three disjoint sets A, B and S, the set S is a carrier of a subal-
gebra of 2, and the algebra (S; +) is a semilattice (i.e. an idempotent com-
mutative semigroup). Moreover, there exists a homomorphism f of the algebra
(X; +) into (S; +) which is a retraction (i.e. ff = f), and equation x4y
— f(@)--f(y) holds for every pair of elements x,y in X. Finally, there is
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@ mapping g, defined on the set of all two-element subsets of 2 with values
in the set B o 8, such that f(g({a, b})) = a+b, and we have

g(@,y) if  w,yed and v #y,
wy =1 flx) if @,yed and x =y,
f(@)+f(y) in the remaining cases.

Conversely, every algebra constructed in this way satisfies equations
(1), (2) and (4)-(8).

Proof. Define, for e X, f(x) = #+ . Using (1), (4) and (8) we get
fla+y) =ot+2+ty+y = f@)+f(y), and also f(x)+f(y) = a+a+y+y
=2o+y+y=2+y+y ==x+y. Moreover, f(f(cv)) =fo+o) =2+
= f(z). Put 8 = f(X). For xeS we have 2-+x = f(x) = # which shows
that (S; 4) is a semilattice. Observe also that for zeS we have Ty
=f(®)y =@ -x-y = x-+y, whence (8; +, ) is a subalgebra of 2. Let B
be the set of all such elements @ ¢8 for which the equation xy =a+y
holds for every yeX, and let A = X\ (B v 8). Define g({xz, y}) (for
@, yed,w #y)by g({z, y}) = «-y. It remains to show that f(z-y) = @+ Y,
but this results from f(z-y) = a?y? = w2+ 92 = w+y.

Now we prove the converse. The equations (1), (2) (4) and (7) are
evident. Observe that every element of the form -y belongs to B w 8

and f(2-y) = f(2)+f(y), whence
(@9)2 = f(a-y)+F(2) = @) +F@)+F@) = F@)+fy,2) = a-(y-2),

thus proving (5). Similarly, every element of the form xz+y belongs also
to B U 8, and for every zeB o S and yeX we have #-y = x4y, whence
(x+y)-2 =x+y+2 and

Y-z =(xy)+z=fley)+f(2) =f@)+fy)+fz) = 2+y+z,

which proves (6). To prove (8) observe that x? = f(x)eS for all relX,
and so

aty = w+y = f@)+y = f(f(=)+v)
= f(f@)+fy) =fl@)+fly) =a+y

as needed.

(iv) An algebra 2 is a free algebra with w free generators in the equational
class defined by (1), (2), (4)-(8) if and only if the set A occurring in (iii)
has n elements, S is a free semilattice with n free generators, f is a one-to-one
mapping of A v B onto S which maps A onto the set of free generators of S,
and g is @ one-to-one mapping onto the set B.

This follows from (iii).
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We shall denote by 2, the free algebra described in (iv).

Let W = (X; +,) be an algebra whose fundamental operations
satisfy equations (1), (2), (4), () and, additionally, also the following:
(9) vto =a,

(10) 2 Yyt+z=wyz2=@+ty)=

(v) Every such algebra 3 is of the following form: the algebra (X; +)
18 a semilattice and there exists an endomorphism of this semilattice, say
r(xz), such that r(z+y)=r(@x)+y and z-y =r(@)+r(y). Moreover,
r(r(@) = r().

Conversely, every algebra of this form satisfies (1), (2), (4), (5), (9), (10).

Proof. Clearly (X; +) is a semilattice and the endomorphism r(x)
= x-x satisfies the assertion.

To prove the converse observe that (1), (2),(4) and (9) are easily

deduced. Moreover,
(@-y) 2 =r(@y)+r(z) = (@) +ry)+rEe)
= r(r(@)+r (@) +r@) =r@)+ry)+r).
Similarly, #(x)+r(y)+r(z) =x-(y-2) and so (H) is proved. To
prove (10) observe that
(@+y)z =r(@+y)+r() =r@)+ry)+re),
gtz =r@)+ry)+z =r@+r@y)+rE) = oy

As an example, consider the semilattice (a, b, ¢; +), where a+b = b,
a+¢ =¢ and b-t¢ = e. Define the retraction » by 7r(a) =r(b) =2b
and 7r(¢)= e¢. Clearly, r satisfies r(x+y) = r(x)+y, whence, putting
x-y = r(x)+r(y), we get an example of an algebra satisfying (1), (2), (4),
(), (9) and (10).

(vi) Let © = (X; +) be a semilattice. The mapping r satisfies the
equation r(x-+vy) = r(x)+y if and only if the following three conditions
are satisfied: r is a retraction ;

(11) v <r(@) (veX);

and for every triple a << b < ¢ of elements of X either r(a) # a or r(b) # ¢
holds.

Proof. First assume that r(x+y) = r(x)-+y holds identically.

We have

r(r(@) = r(r(@+ o) =r(r(@)+ 2
= r(z+r(®) =r(@)+r@) =r@=),
rety) =r(r(@ty) =r(r@)+y)
=r(y4r(@) =ry)+r@) =r@)+rQy).
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Condition (11) immediately follows (simply put x = y). If for some
triple @ < b < ¢, 7(a) = a and r(b) = ¢, then we would have r(a)+ b = b,
r(a)+r(b) = ¢ > b, a contradiction.

Now assume that r satisfies the three conditions stated above. We
have r(z) <r(x)4r(y) and so, by (11), ¥y <7(y) <r(x)+7r(y). Conse-
quently r(x)+y < »(x) +r(y). Let now z and ¥ be such elements of X
for which 7r(z)+y < r(z)+r(y). Obviously r(r(@)+y) = r(r(@)+r)
=r(@)+r(y) #r(@)+y.

The equation r(#)-+y = r(x) cannot occur as it would imply 7 (r(x)+y)
= r(r(«)) = r(®) = r(#)+y against the choice of z and y. Thus »(x)
<r(x)+y <r(x)4r(y). But now, putting r(x) = a, 7 (z) -y = b and r(z)+

Fr(y) = ¢, we obtain a situation which is excluded by our assumptions.

(vil) Let © = (X; +) be a semilattice and let r(x) be a retraction
satisfying r(x+y) = r(@)+y. If r(a) # a, then for every b < a either
r(b) =r(a) or r(b) is incomparable with a.

Proof. Let b <y and r(a) # a. The inequality r(b) < r(a) is
impossible by (v). If »(b) > a, then r(b) < r(a), hence r(b) 5 »(a) implies
@ <r(b) <r(a) and 7(b)+a = r(b) < r(b)+r(a) =r(a) #r(b), a con-
tradiction.

(viii) If a semilattice S is linearly ordered, say a, < a, < ..., and
r(x) is a retraction satisfying r(x-+y) = r(®)-+y and such that for some
j we have r(a;) = ay, then r(a;)) = a; for i > k and r(a;) = ay for i < k.

This follows easily from (vi) and (vii).

2. Let a(2) denote the number of elements of an algebra 2, and
let ¢«(2f) denote the maximal cardinality of an independent set in 2. If K is
a given class of algebras, then we define

p(n, K) = min{a(A): Ae K and «(A) = n}.

By Ki we shall denote the class of all algebras which have constants
and at least two different symmetrical essentially binary algebraic opera-
tions. We shall use the inequality (see [2])

(12) a(Y) > Z (:’) w;

which estimates the cardinality of an algebra 2 containing an independent
set of n elements and having ; essentially J-ary algebraic operations.
(Note that w, >1, as the operation er(@) = is an algebraic one Dby
definition).
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We have the following
TaroREM 1. For n =1 we have p(n, K;) = n*+1.

Proof. The inequality p(n, K;) = #’+1 is a consequence of (12).
To get the reverse inequality consider for » =1 the 2-element lattice
with one constant (= 1), which has one independent element, and for
n > 2 consider the algebra €™ as described in (ii). One has only to observe
that in €™ the only operations which depend on all their variables are
x-+vy,xy,x and the constant operation 0.

Now we shall consider the class K, of algebras, consisting of all
algebras without constants with at least two different symmetrical binary
essentially algebraic operations. We shall prove the following

TueorEM 1I. For n >3 we have p(n, Kj) =2"—1+4 (g)+n
Moreover p(1, Ki) =2 and p(2, K;,) = 4.

To the proof of this theorem we shall need several lemmas. Let Ae K,
and let z+y and 2-y be two different symmetrical essentially binary
algebraic operations in 2. Let us introduce the following notations:

fu(z,y,2) = (@+y)+2, filz,y,2) = (@+2)+y,
fis(, ¥,2) = (y+2)+2, ful®,y,2) = (@ )
fzz(wyyy') (z-2)y fgs(w,y, 2) = (y-2)w
fa(®,y,2) = (04 ) Jaz(®, y,2) = (4 )
fu(@,y,2) = (y+2)e, ful@y,?2) =@ J)+z,
fulw,y,2) = (0 )“l’yr faa(®, y,2) = (y-2)+.

LEMMA 1. If the operations x-+y and x-y are both idempotent, then
every operation fu(x,y,2), 4,k =1,2,3, 18 essentially ternary.

Proof. Consider, for example, the operation f; (x,¥,2). As oty
— y -+, it depends on @ if and only if it depends on y, but putting =y
we get 22, which depends on  and 2, hence f;, depends on all its variables.
The proof for other operations fy is similar.

LEMMA 2. If the operations x+vy and x-y are both idempotent and
i #j, then the operations fi. and f; are distinct.

Proof. If, e.g., fi1 = fa1 O f1, = f31, then putting # =y we get
#-+2 = x-2 a contradiction. If f,; = f,,, then putting first z =x+y
and then z = -y we also get x-+y = @y, a contradiction. If f;; = fs,,
then

(+y)+z = (x-2)y = (2)y =ty +e
= y+e)te = (ya)z=(2Y)?,

whence f;; = f,; which is impossible as we have already shown. Other
cases can be dealt with in the same way.
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LEMMA 3. If the operation x-y is tdempotent and associative, then
fs1 cannot be symmetrical. Similarly, if z-y is idempotent and associative,
then f4; cannot be symmetrical.

Proof. Otherwise we would have

oty = (0+y) (2+y) = (o4 (@+y))-y
= (@+y)y =Wta)y =y+y) »=yw=,

which is impossible. The second part of the lemma obtains by interchanging
-+ and - in the last chain of equalities.
From lemmas 1-3 we obtain immediately

LemMA 4. If lw—l—y and z-y are idempotent, then the algebra 2 has at
least 8 distinct essentially ternary operations.

Proof. In fact, if #+v and «-y are both associative, then f,,, f.,,
Jany far (k = 1, 2, 3) are essentially ternary and distinet; if x|y is asso-
ciative but -y is not, then f,, fo, for, fu (k = 1,2, 3) are such; if -+
is not associative but «-y is associative, then Fies fars fors fax (B =1,2,3)
are such; and, finally, if neither #+y nor -y are associative, then fi,
fors fa1 and fy, (kK = 1,2, 3) are such.

Proof of theorem II. Obviously p(1, K2) > 2 and the two-element
lattice realizes the equality. The inequality p(2, K;) >4 follows from
(12) and equality is realized by the lattice consisting of 4 elements 0,1,a,b
with a+b =1,a-b = 0.

Now let » > 3. From Theorem 1 of [4] it follows that 2 has essentially
j-ary operations for j = 3,4, ..., n, and so w; =1 (j=3,4,...,n) and
wy = 2. If 24y and x-y are not both idempotent, then w, > 2 and, by

(12), we get a(A) > 2"—1+(§)—}- n. If both -y and -y are idempotent,

then the above inequality follows from lemma 4 and (12). In this case
the algebra which gives the least value for a is the algebra 2, described
in (iv). It is an easy exercise to show that for this algebra we have v, = o,
=2, and w3 =... =w, =1. In fact, the only algebraic operations
in 2, are the following: #,x+y,x -y, 2+ and T+ ...+ xr(k = 3).

Now let K® be the class of all algebras containing two distinet Sym-
metrical non-constant binary operations, one of them being idempotent.
We prove the following

TueorEM III. For n >3 we have p(n, K®) = 2(2"—1). Moreover,
p(1, K®) =2 and p(2, K®) = 4.
We shall assume that x4y is idempotent. First we prove that in

every algebra from the class K® there are at least two essentially n-ary
algebraic operations for n = 2, 3, ... Obgerve that r+y and x-y depend
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on both variables, and consider (for n = 3, 4, ...) the equations

Fa(@1yey n) = ((...(ml—l—m2)—i—m3)+...—l—mn_l)—l—mn
and

Gn(Zyy ooy y) = fn—l(wla ooy ®p_1) Bpe

The operation f, is essentially n-ary by a result of Marczewski [3].
In a similar way, we prove that the operation g, is essentially n-ary. Let

Sa(®y, X5) = @+,
and

82n($1, seey mfﬂ) . 82711‘1(%1, ey m2n—1)+82n—-1(m2n—1+1, ey wzn).

Note that the function f, (..., #,_,) can be transformed after
a suitable substitution of the form

@y = 85 (Yaiy -y Yohi)

to the form s,m—1(2,, ..., 2;n—1), where z; = y;;, with suitable j and k depend-
ing on ¢ (see [3]).
Similarly we can transform ¢, to the form

Szn——l(zl, ceey 2211—1)'82n—1(%1, ceey ’u2n~1).

This operation is quasi-symmetrical and non-constant, because
otherwise by putting #; = # and u; =y for i =1,2,...,2"" we would
obtain z-y = const, a contradiction. It follows that this operation depends
on all its variables and so does g,. Finally observe that f, # gy.

We need also the following

LEMMA 5. If U is an algebra having at least two symmetrical essentially
binary operations - and -, of which + is idempotent, and - s a constant,
then there are at least five distinct essentially ternary operations in o,

Consider the operations fi;, fizs fis, fars fazs fss and fy, as defined in
the proof of Theorem II above. It is easy to see that the operations f
and f,, are essentially ternary. To prove that the operation fa is also
essentially ternary consider the quasi-symmetrical operation ay--zu.
It is obviously not constant, and it follows that f,, is essentially ternary.
Moreover, observe that the operations fy,fs and f;, are all distinct.
In fact, if f,, equals fs;, then putting # = y we get v 2 = 2z. If fi1 = fa1s
then putting at first # = #-y and then z = x-+y we get also x+vy = 2+y.
If fs; = fa1, then identifying # and y we obtain z-z2 = ¢+-= with a cons-
tant e, contrary to our assumptions.

If + is not associative, then we obtain five different ternary opera-
tions: fix (k =1, 2,3), fs and f,, because no operation fy is equal to
one of the remaining four, as this would imply the symmetry of f,; and
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the associativity of . If the operation - is associative, then we obtain
also five different essentially ternary operations, namely f,q, fa (k
—1,2,3) and f,;. In fact, f;, cannot be symmetrical as this would imply

¢ = @+y)(e+y) = [2+@+y)y = @+Yy
= (y+a)y = (y+y)o =yz = ay,

contrary to our assumptions. It follows that none of the operations fy
(k = 2, 3) can be equal to one of the remaining four, as this would clearly
imply the symmetry of f;,. The lemma is thus proved.

Now observe that the equations p(1, K#) =2 and p(2, K®) =4
follow in the same way as the corresponding equations in theorem IL.
Using lemma 4 if -2 = », and using lemma 5 if #-@ = const, we obtain
by (12) the inequality p(n, K®) > 2(2"—1). To end the proof, observe
that the free algebra with » generators in the class described in (v) real-
izes equality in the last inequality. In fact, it has only the following
operations: x, 2, #,-+...+, and @, ... ¥, and the needed result follows
from (12).

Now let K® be the class of all algebras having at least two elements,
and possessing at least two distinct symmetrical and idempotent essentially
binary operations. We prove the following

TueorREM 1V. The following equations are true:
p(‘l,I{[z]):zyp(er[z]) = 4, p(3’K[2]):18-

(This theorem gives only a partial result for p(n, K®). We conjecture
that the extremal algebra for this problem is the free distributive lattice
with »n generators. If it is so, then the calculation of p(#, K™ coincides
with the unsolved problem of determining the cardinality of the free
distributive lattice with » free generators, which goes back to Dedekind).

LuMMA 6. If in an algebra A (with a() = 2) there ewist no other essen-
tially j-ary operations for j = 1,2 save x,x-+y,x 'y, where + and - are
distinet idempotent, symmetrical, associative and essentially binary opera-
tions, then the equation

(13) 2(xt+y) =0tay =
holds true.

Proof. Note first that neither x(x+y) nor -+ xy can be constant,
as otherwise putting # =y we would get = constant. If z(z+y) =¥,
then

y = (@+y)(@+y+y) =a+Y;
if #(x+y) = ay, then

w4y = (@+y)(zt+y+a) = (@+y)r = 2y;
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in both cases a contradiction. Hence either x(x+y) = ¢+y or z(z-+ xy)
= @, ~
If x+ay = y, then
| Yy = wy+ayy = xy,
and if z+xy = x4y, then
xy = 2y+ayr =oy+o = x+Y;
in both cases a contradiction. Hence either -+ xy = xy or z-}xy = 2.
If #(x+vy) = x+vy and ¢+ 2y = 2y, then
wy(z+y) =w(@ty) =2+y,
but on the other hand
zy(@+y) =xyt+ay(@ty) =vyt+aol@t+y) =ay+ot+y = ay+x =y,

whence zy = 2+, a contradiction.
If x(#x+y) =2+y and x+ay = », then

x=otw(et+y) =ac+toety =ao+ty,
a contradiction. Finally, if x(x+v) = « and -+ xy = vy, then
z = x(x+ay) = vy = xy,

again a contradiction. Thus it remains only the possibility z(z-+y) = @
= -} oy, as asserted.

The obtained result can be also stated in the following form:

(ix) If an algebra A = (X; +, -) satisfies the assumptlions of Lemma 6,
then it 1s a lattice.

LEMMA 7. If + and - are distinct symmetrical, idempotent and essen-
tially binary operations in an algebra A with a(A) = 2, and the operation
far (@, y,2) = (®-+vy)2 is symmetrical, then there exists in A an essentially
binary operation which is different from -+ and -. An analogous statement
is true if we replace the operation fs; by fu (v, y,2) = (2 y)+=2.

Proof. If f;, is symmetrical, then

oty = (@+y)(@+y) = (@+@+y)y.

Let k(x,y) = @+ (#+y). The operation % is not constant because
it is idempotent, and the algebra contains at least two elements. If
k(xz,y) = ® or k(z,y) = vy, then the above equation implies #+y = xy
or z+y = y. It follows that & is essentially binary. If k(z,y) = @y or
x-+1vy, then

a+y = (e+(@+y))y = (y+@+y))y = G+y)(@+y)

= (z+y)y = Wt+y)e =2y,
a contradiction.
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The replacement of f5;, by f,; does not affect the result as «+y and
z+y can be interchanged.

LeEMMA 8. Under the assumptions of Lemma 6 there exist in 2 at least
nine different essentially ternary operations.

Proof. Lemma 4 shows that the operations fi,, fo,fsr and fgu
(k=1,2,3) are different and essentially ternary. We show that the
operation

fs(@,y,2) = (@+y)(@+2)(y+2)

is essentially ternary and distinct from fi (3 <4 <4,1 <k <3) and
fi1s for- In fact, it is clearly symmetrical and not constant, hence it is
essentially ternary. It is not equal to fy or fu as they are not symme-
trical in view of Lemma 3 (observe that if fg is symmetrical, then f,,
is too, and the same applies to f,;), and is not equal to f; or f,, as in these
cases putting @ =y we would obtain a contradiction with Lemma 6.
Lemma 8 is thus proved.

The proof of equations p(1, K¥) = 2 and p(2, K¥) = 4 proceeds
in the same way as the proof of the corresponding equations in Theorem IT.
Now observe that for any algebra 2 in K?®! we have o, >1, 0, > 2,
and ws > 8. (This last inequality follows from Lemma 4). Lemma 7 implies
that if one of the operations f;,, f,; 18 symmetrical, then w, > 3 and (12)
implies a(2) > 20. If both operations f,;,f,; are not symmetrical and
either -} or - is not associative, then, by Lemma 2, we have wz > 10,
and (12) implies a(2) > 19. If both operations + and - are associative,
and there exists some non-constant and non-trivial unary or binary
operation distinct from -+ and -, then, similarly, we obtain a(2) > 20.
Finally, if the assumptions of Lemma 6 are satisfied, then Lemma 8
implies @y > 9, hence, by (12), a(U) > 18. It results that p(n, K?®) is at
least equal to 18. To end the proof observe that the free distributive
lattice with three generators is in K*! and has 18 elements. The theorem
is thus proved.

3. If K is a class of algebras, then we define the function ¢(n, K)
by the formula

q(n, K) = max{¢(A):Ae K, a(A) = n}.

We prove

THEOREM V. For n > 2 we have q(n, K) = [(n—1)"].

Proof. Theorem I implies the inequality ¢(n, K2) < [(n—1)"%].
To prove that equality occurs here take for n = 2, 3, 4 the linearly ordered
lattice of n elements with usual operations to which an algebraic constant,
the greatest element, has been added. For »n exceeding 4 proceed as follows:
let m = [(n—1)"*] and consider the algebra €, as defined below (ii).
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To the carrier of this algebra add a new set E having n—(m2-41) ele-
ments and define in the sum-set operations #+vy and -y in the same
way as it was done for € (see §1). It is easy to see that the algebra
obtained in this way proves the wanted equation.

TaeEorREM VI. For n > 13 we have
q(n, K,) = max(m:2™—1- (gb)—k m < n),

whereas for n =4,5,...,12 we have
q(n, K3) =2  and  q(2,K) = q(3, K3) = 1.

Proof. Theorem IT implies that the left-hand sides of the asserted
equations do not exceed the right-hand sides. To prove that the equations
are true, take for » = 2, 3 the linearly ordered lattices with » elements,
and for » = 4, 3, ..., 12 take the lattices of the form {a,, ..., a,; v, ~},
where a;, ~ a, = ag, 4, v a, = a, and the elements a,,a;,...,a, are
linearly ordered according to their indices. For the case # > 13 consider
the algebra 2, as defined in (iv), with

m = max{k:Z’“_1+(z)+k < n},
and add to 8 a linearly ordered set P of

P = n—2m+1_(?)—m

elements. Assume, moreover, that 2 < p holds for p e P and every « from 8.
The obtained algebra with the operation z-y defined as in (iii) and (iv)
furnishes an example proving the asserted equation.

THEOREM VII. For n > 14 we have
q(n, K®) = max{m:2(2™—1) < n},

whereas q(n, K®) = 1 forn = 2,3 and g(n, K®) = 2 for n = 4,5, ..., 13.

Proof. In view of Theorem III only the extremal algebras have
to be shown. For n not exceeding 13, the construction is the same as in
the foregoing theorem. For n > 14, take the free algebra & with

m = max{p:2(2°—1) < n}

free generators in the class described in (v) and add to its carrier a set
P of n—2(2™—1) elements. Order this set linearly and assume that P > x
holds for peP and every a belonging to the carrier of &. Moreover, let
r(x) occurring in (v) be prolonged on P by means of r(p) = p (peP).
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If in this enlarged algebra we define z-y = r(x)+r(y), then we obtain
the wanted example.

Observe that one can easily extend Theorems I, IT, ITIT and IV to
the corresponding classes of algebras with s different binary symmetrical
operations.
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