A THEOREM ON JOINT PROBABILITY DISTRIBUTIONS IN STOCHASTIC LOCALLY CONVEX LINEAR TOPOLOGICAL SPACES

BY

I. KOTLARSKI (WARSZAWA)

Let (Ω, \mathcal{B}, P) be a probability space, \mathcal{X} a real locally convex linear topological space and $X(\omega)$ a strongly \mathcal{B} -measurable mapping from Ω into \mathcal{X} which will be also called a $random\ variable$ in \mathcal{X} (random \mathcal{X} -variable). Its distribution $P_X(A) = P(\omega \colon X(\omega) \in A \subset \mathcal{X})$ is uniquely determined by the characteristic functional

(1)
$$f_X(x^*) \equiv Ee^{ix^*(X)} \equiv \int_{\Omega} e^{ix^*(x)} P(d\omega).$$

Throughout this paper x (may be with indices) belongs to \mathcal{X} , x^* belongs to \mathcal{X}^* , where \mathcal{X}^* is the space conjugate to \mathcal{X} , and k=1,2,3.

It is well known that the characteristic functional of a random \mathscr{X} -variable has some properties similar to those of the characteristic function of a real random variable (see [1]). They will be used in the sequel. The aim of this paper is to prove the following

Theorem. Let X_k (k=1,2,3) be independent random \mathscr{X} -variables and let

$$(2) Y_1 \stackrel{\text{df}}{=} X_1 + X_3, Y_2 \stackrel{\text{df}}{=} X_2 + X_3.$$

If the joint characteristic functional of (Y_1, Y_2) does not vanish, then it determines all distributions of X_k up to a change of location.

Proof. Denote the characteristic functional of X_k by $f_k(x^*)$ and the joint characteristic functional of (Y_1, Y_2) by

(3)
$$f(x_1^*, x_2^*) = E\{e^{i[x_1^*(Y_1) + x_2^*(Y_2)]}\}.$$

It is easy to see that

(4)
$$f(x_1^*, x_2^*) = f_1(x_1^*) \cdot f_2(x_2^*) \cdot f_3(x_1^* + x_2^*).$$

If X'_k are other independent random \mathscr{X} -variables such that the joint characteristic functional $f'(x_1^*, x_2^*)$ of $(Y'_1, Y'_2) = (X'_1 + X'_3, X'_2 + X'_3)$ does not vanish, then also

(5)
$$f'(x_1^*, x_2^*) = f'_1(x_1^*) \cdot f'_2(x_2^*) \cdot f'_3(x_1^* + x_2^*),$$

where $f'_k \equiv f_{X'_k}$.

Now we assume that

(6)
$$f'(x_1^*, x_2^*) = f(x_1^*, x_2^*).$$

By this assumption and from (4) and (5) we obtain the equation

(7)
$$f_1'(x_1^*)f_2'(x_2^*)f_3'(x_1^* + x_2^*) = f_1(x_1^*)f_2(x_2^*)f_3(x_1^* + x_2^*).$$

Let us put

(8)
$$f'_k(x^*) = f_k(x^*) \cdot g_k(x^*), \quad k = 1, 2, 3.$$

Since the left-hand sides of (4) and (5) do not vanish, it follows that also none of the functionals f'_k , f_k and g_k does. Putting (8) into (7) we obtain for the unknown functionals g_k the equation

(9)
$$g_1(x_1^*)g_2(x_2^*)g_3(x_1^*+x_2^*)=1.$$

These functionals are continuous in the weak* topology of \mathscr{X}^* and satisfy the conditions $g_k(0)=1$ and $g_k(-x^*)=\overline{g_k(x^*)}$. This follows from (8) and the same properties of characteristic functionals f_k and f_k' (see [1]). Putting $x_1^*=x^*$, $x_2^*=0$ in (9), and then $x_1^*=0$, $x_2^*=x^*$, we obtain

(10)
$$g_1(x^*) = g_2(x^*) = 1/g_3(x^*).$$

Putting (10) into (9) we obtain for g_3 the equation

(11)
$$g_3(x_1^* + x_2^*) = g_3(x_1^*) \cdot g_3(x_2^*).$$

Let now

$$h(x^*) = h_1(x^*) + ih_2(x^*) = \ln g_3(x^*),$$

where In is the continuous branch of the logarithm which satisfies the conditions

(13)
$$h(0) = h_1(0) + ih_2(0) = \ln g_3(0) = \ln 1 = 0,$$

and $h_j(x^*)$, j=1,2, are real. Then equation (11) takes on the form

(14)
$$h_i(x_1^* + x_2^*) = h_i(x_1^*) + h_i(x_2^*), \quad j = 1, 2,$$

where $h_j(x^*)$ are real weakly* continuous functionals satisfying conditions (13) and

$$(15) \hspace{1cm} h_1(-x^*) = h_1(x^*), \hspace{0.5cm} h_2(-x^*) = -h_2(x^*).$$

Then we see that $h_1(x^*) \equiv 0$ and $h_2(x^*)$ is a real linear functional on \mathscr{X}^* continuous in the weak* topology. By the Banach's theorem (see [2], p. 112) h_2 is of the form $h_2(x^*) = x^*(x_0)$ with a certain fixed $x_0 \in \mathscr{X}$. Using (10) and (12) we obtain that

(16)
$$g_3(x^*) = e^{ix^*(x_0)}$$
 and $g_1(x^*) = g_2(x^*) = e^{-ix^*(x_0)}$.

Finally, putting (16) into (8), we see that

(17)
$$f'_j(x^*) = f_j(x^*) \cdot e^{-ix^*(x_0)}, \ j = 1, 2, \text{ and } f'_3(x^*) = f_3(x^*) \cdot e^{ix^*(x_0)},$$

where x_0 is a fixed element of \mathcal{X} . This ends the proof.

Remark. An analogous theorem can be proved in a similar way (using Pontryagin's duality theorem instead of Banach's theorem) if \mathscr{X} is a locally compact abelian topological group.

Acknowledgment. The author is grateful to Mr. Wojbor Woyezyński for his help in improving the paper.

REFERENCES

[1] Yu. V. Prohorov, *The method of Characteristic functionals*, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, 1961, p. 403-419.

[2] Kôsaku Yosida, Functional Analysis, Berlin-Göttingen-Heidelberg 1965.

Reçu par la Rédaction le 15. 11. 1966; en version modifiée le 23. 12. 1966