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BY

A. KRZYWICKI (WROCEAW)

In this paper a new implicit finite-difference scheme for a general
initial value problem for the Navier-Stokes equations is given. The paper
is a continuation of paper [3], where two different implicit schemes have
been presented for the same problem. However, the numerical realization
of schemes given in [3] would be complicated: these are 7 -point schemes
with four unknown functions. The aim of this paper is to show that a partial
simplification may be gained by using a scheme modelled on those appear-
ing in the so called TAD (implicit alternating direction) - method (see,
e.g., [1]). By introducing two auxiliary “intermediate” velocities (denoted
by » and w in equations (5)-(8) below) the original Navier-Stokes equa-
tions may be replaced by a system of 3 X341 difference equations and
in a part of them a complete separation of variables is attained: they
present 3-point one-dimensional schemes. The remaining equations
present a 4-point scheme.

Due to the character of equations under consideration we do not
hope to preserve much of the merits of TAD-method. It is shown that
the proposed scheme converges to a weak solution of the problem under
consideration under the same assumption concerning the mesh sizes
of the lattice as for the explicit scheme for the heat equation. The idea
of the proof is the same as in [3]: it is based on an a priori estimate (see
formula (21)) which is a modified classical energy inequality for solutions
of Navier-Stokes equations. This method restricts the form of admissible
difference schemes, in particular, the term which corresponds to non-
-linear term in original Navier-Stokes equations should be chosen so as
to bring no contribution into the basic a priori estimate. Therefore, e.g.,
the explicit schemes should be excluded from our considerations.

1. Let 2 be a bounded domain in E? with the boundary 8. Con-
sider for (z,1)eQ = Qx[0,T], = denoting a point of B3, = (a1, a2, 4?),
and 7T — a positive constant, the following initial value problem for
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an unknown vector-valued function # = #%(x,t) and a scalar function
P = P, 1):

oU
(1) S VAU U = —VPLF, VU =0,

Us =0, Ulp—og = A .
v denotes the gradient, v-# = Y (0%'[da") — the divergence of %,
[

U (i =1,2,3) — the i-th component of %, F = % (z,t) and o = ()
are given vector-valued functions (we shall say simply wvectors) defined
on ) and Q respectively. » is a positive constant.

Let # denote the class of C*(Q) vectors @ which, for each te[0, T],
are divergence free, i.e. y-® = 0, and which have compact supports

in 2x[0,T). Let further j (2) be the closure under L,(f2)-norm of the
class of C°(Q) vectors which are divergence free and have compact sup-

ports in Q. Assume F eL,(Q)), & ej (). A vector % will be called a weak
solution (in the sense of E. Hopf) of the problem (1) if # is, for each

1[0, T), an element of o (2), if V#eLy(@Q), and if for all de.# the fol-
lowing identity holds true:

o fuffem g v

+ fd(m)di(m, 0)da = 0.

}dm+

In the last formula % (0®/dt) denotes the ordinary scalar product
of vectors % and 09 /0t and similarly in the remaining terms.

2. Cohsidgr in E*x[0,T] a rectangular grid G5; of points with
coordinates a" = 4 mnh, t = nk, where h and k are positive constants,
n=0,1,2,... Let K be an elementary cube of the grid of the z-space,

K ={o: o =a'+ Y i, 0< <1},

where 2’ is a point of G, and e’ — unit vector parallel to the a'-axis.
Let K denote the closure of K, ©"—a closed domain of the plane ¢t = nk
equal to the union of all those K which lie within ), and let finally S"
denote the boundary of 2". We shall denote the sets 2" ~ Gy, 8" ~ Gy
and (2°x[0,T]) ~ Gur by ©", s" and ¢ respectively and we shall call s"
the boundary of ™. The sets »°® and s°, when considered as subsets of 0,
will be denoted simply by o and s, respectively.
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All functions considered on the subsets of G4, will be denoted by
small letters, all functions defined on @ — by capital letters.

Let a function » be given. We shall use in the sequel the following
notation:

i77‘5(:17, t) = v(x+ he’, t),

vi(®, 1) = h—l[_{'bi('”, t)—o(x,1)],

-,

vi (2, 1) = vi(x, 1),
v(2,t) =v(w, t—Fk).

Here €', as before, is unit vector parallel to the #'-axis. We adopt
also the standard vector and L,-space notation and we shall write, for
any vectors w and v:

Uy = Zui'vi, Up UV = Zuim,
1 7
(0, 0 = 1 Y uw, ()2 = (u, w)n,

(Uy Bz ). = h3Z Bl B [ug(n)]|2 = h32 Uy Vs

the last three sums ' being taken (here as always in the sequel in similar
expressions) over all those points of ", where the expression under
D'-sign is defined, i. e., where all the points involved in this expression
lie within o".

Let K be an elementary cube introduced before, X'—its boundary,
and let K, (resp. X;), 0 < A< h, denote a cube (resp. surface) obtained
as a result of parallel shifting of K (resp. X) along the vector e!- e*-e?
at distance 1V3. Let # be any divergence free vector defined in £ which
vanishes near 8. Extend % to all E3 by putting #° = 0 outside £, and
denote this extension with the same letter #". We define on Gy a dif-

ference approximation w of #° by putting in the corner ' of K (compare
definition of K)

h
(1) wi(a') = h=* [ da [wiaz,
0 i
25
where X} denotes that face of K which lies in the plane a; = xi+ A.
To assure vanishing of w along the boundary s we make the following

AssumpTIoN (I). h is so small that for any point 2’es the set (J K;,
/€e[0, h], lies outside of the support of # . 5
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The vector w thus defined satisfies the equation
divw = ZwZ = {)
7

and this follows from the identity

h
divw =" [ar [#,42,
0 2}.
where %", denotes the outward normal component of the vector # along
2. The inner integral of the last formula vanishes due to the assumption
VH# =0. '

Few other approximations, besides that one described above, will
be needed in the sequel (similarly as in [3]).

Given a function u (or v,w,¢,...), we shall denote by U (or
V,W,®,...) a function which is constant within each parallelepiped
K, = KX[nk, (n+1)k), K having the previous meaning, and equal
there to the value of u (or v, W, @, ...) in the corner (z’', nk) of K, if
K, = Q. Otherwise we put U (=V = W — ...) = 0. In case of a func-
tion u dependent only on «, the function U, defined above, will be con-
sidered, if needed, as function defined only in z-space.

Another approximation { (respectively B, W, ...) of a function u
(respectively v, w, ...) will be defined as follows: ${ is linear with respect
to each a' separately whereas &l is constant with respect to ¢ within each
elementary parallelepiped K, and coincides with % in all points of the
grid G if K, = Q. Otherwise we put ${ — 0 within that K,. Both
extensions U and ¢ have been introduced in [4] and the proofs of all
their properties needed below may be found there.

Finally, the vector & (x, t) appearing in (1) will be approximated
by the vector f defined as follows: the value of fin the grid point (2, nk)
is equal to

h3k! fgrdmdt.
Ky,

If we extend # to all spaces of (#, t) putting F = 0 outside of ), then
the last formula defines f on all Gyx. Note that the approximation &
of f is strongly convergent to # in L, (@) if only FeL,(Q). Similarly,
the approximation W of w, w being defined by formula (4), converges
strongly in L,(Q) to ¥, if only % eL,(£2). The last assertion follows
from the identity

Wiw)=Wi@) = b= [ [#" @)= (y)]dy
R
valid for any #. R; in the last formula denotes the domain swept out
by Zj, when 1 ranges over the interval (0, h).
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3. Let us take a sequence .7 of regular divergence free vectors
with compact supports in Q converging strongly in L,(£) to /. Then,
for each m, form a vector a'™ in accordance with (4) and its approxi-
mation 4™ by choosing h = h,, so that: (a) h, — 0 for m — oo, (b)
for each m condition (I) is satisfied with » = h, and # = ™, (¢)
|A" — o |0y — 0 for m — oco. A sequence {h} will be said fo satisfy
assumption (11) if its elements h = h,, satisfy (a)-(c).

Denote by » and p the difference analogues of the original # and 2
of (1) and introduce two auxiliary vectors » and w. Consider, for any
t=mnk,1<n<N, N=[T|k], the following system of finite difference
equations

+
() k(0 — ) — v (vy+ g+ Tag) + 3 (T2 0 + T (0, 0)} = O,
(51) ?)[sn == 0,
+
(6) k_l(w_?))—”(w2§—‘7}2§)+%{v§@5+ v (wy+wz)} = 0,
(64) Wl = 0,

+3
(7) k_l(“—w)_v('ltai—wai)'}‘%{wi u + w3 (ug+ uz)} = —grad p+f,
(74) Ulgn = 0,
(8) dive = 0,

where gradp denotes the vector with components p;. Moreover, u is
assumed to satisfy the following initial condition:

(9) Tluey = a™.

The proposed system is such that, assuming # and p to be known
on 0" ', we find 4 and p on " by successive solving subsystems (5),
(5,), then (6), (6,) and finally (7)-(8) plus an additional equation (see
below, (10)). The vectors v and w play here only an auxiliary role. Due
to them the desired simplification has been gained.

Equations (5), (6) and (7) are taken, for any n, 1 <n< N, in all
interior points of " and equations (8) in all points of the set w* which
consists of all interior points of " plus that part s* of s” where (8) is
defined, i.e., where the four points entangled in (8) lie within ", and
at least one of those points lies outgide of s”. The reason for the last
restriction is that if all four points involved in (8) lie on s", then (8) is
a linear combination of equations of (7,).

System (5)-(8) thus defined consists of so many equations as is the
number of values of v, w,u,p appearing there. This is clear as far as
either the unknowns »,w,# and equations (5)-(7,) or the unknown p
and equations (8) taken in interior points of " are considered. The re-
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maining equations (8) are taken in all points of set s*. Now in equations
(7) there appear boundary values of p and these are taken, as is easily
seen, in and only in points of the same s*. This together with the prece-
ding remark proves our assertion. However, equations (8) are linearly
dependent due to the relation

Zdivuzh_lz anizo, ¢ = 41 or 0,

gh 1

valid for any »n << N. Therefore we attach to our system an additional
equation

(10) Zp =0,

w*

In some cases single equation (10) may not suffice. It does, how-
ever, when o is connected, which means the following: each pair
of points of w\ s may be joined by an “h-chain” (with & steps) consisting
of points of w\s. To exclude the situation when o or, which is the same,
w" is not connected, we replace w by a new set «’: it results by attaching
to o some additional points of the grid lying along all those “narrows”
of the domain 2 which have caused the decomposition of » into disjoint
components. In the case when such a completion of o to ' is needed,
the system (5)-(10) is considered on this new set o’ with v, w, u satisfying
homogeneous boundary conditions along the boundary of o’. Then we
additionally assume 2 and o’ to be so that mes (2'\2) — 0, with & — 0,
where 0’ denotes the union of all elementary cubes with at least one
corner in o'. ‘

4. Let U be the approximation of a solution % of system (5)-(8)
described in section 2.

THEOREM 1. Let {h} be any sequence of positive numbers tending to
zero, subject to assumption (II) formulated at the beginning of section 3.
Put k = ah® with a < A, where A will be defined later (see formula (17)).
Then

(i) system (5)-(10) is wuniquely solvable for any pair h,k, k = ah?,
he{h},

(ii) from the set {U} of U’s corresponding to he{h} a subsequence
may be chosen which converges strongly in L,(Q) to a weak solution of
problem (1).

5. The proof of Theorem 1 will be based on some a priori estimate
of solutions of system (5)-(10). In this section we shall derive this esti-
mate.
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We begin with some auxiliary identities. We have, first of all, the
identity

(11) h3Z’M~£'U = _hBZ’M’U{-

valid for any pair of functions u,v defined on " if only wv vanishes
on s". In particular, we have

(12) W =0, b)) Duvii = —(tzy v

for any pair u, v, if only « vanishes on s".
Due to the identity

(13) ; (uv); = u;ul+ uv;

we can write:
—i +i —i +i
(wvv); = v +u(vv); = [ugv 4+ u(v;+v3)]o.
Therefore, by (12), we have
+i
W 3 [ui (vt v)]o =0,

—1
if only wvwv|»n = 0. We have also, due to (11),

h32ugradp =0

for any u satisfying the equation divu = 0 in " and vanishing on s".
Note also the following identity

21° M (w—v)u = ()| — [lo(n) |+ |[u(n) —v(n)|".

6. Form the inner products (in the sense of formula (3)) of equations
(5), (6) and (7), taken at any fixed t = nk, 1 <n < N, with 2kv, 2kw,
2ku, resp., taken at the same ¢. Making use of some of the identities given
in the preceding section, we get the following three equations

o) — 1?4 o — @I + 20k {llo1 | + (v, To)u+ (V3, Tg)n} = O,
(14) o] — ]+l — o] + 20k { [wsl* — (wy, v5)a} = 0,
e — (o] + llw— w|* + 20k {us | — (us, wa)n} = 2k (f, ),

where all u, v, w, if not explicitely written down, are taken at the same
t = nk.

If we now sum up, side by side, equations (14) and then perform
some simple transformations, we get the identity

(15) ()| — ll (0 —1)[[*+ 8*(n) + 2vkH (n) = 2k (f, u)n,
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where
8 (n) = [lo(n) —w(n—=1)|"+ [jw(n) — v (n) [*+ [[u(n) — w(n) |7,
H(n) = [[oy(n) "+ [y (n) | + [l (0) [ 4 (7, — w0y, 05)+
+ (g — wg, Vg)n+ (V53— Uy, Wy),.
If we now make use of the identity
il = [loall® + (s 405, us—v;),

which is valid for any functions w, v, we can rewrite H(n) in the form

(16) H(n) = HD*(n)+ Y (i, #;—ib;),}.
Here
D (n) = |[vo(n) [*+ [l (0) |+ s (0) [

% denotes any one of the vectors v, w,u, and ¥, w —any two of the vee-
tors w, v, w, u, all taken at ¢t = nk, the sum (16) being extended over

~ ~

#, v, w and 4. It contains a finite number of terms, some of them may
be repeated, yet the form of H(n) is the same for all n. Applying now
the inequality

(s, v —wi)| < A7 ||| 4+ SR [l — w0,
valid for any positive g and any functions u, », w, we can estimate the

second term in (16) by :D*(n)+ Mh~*8*(n) with some positive constant
M, which is independent of n, h,u, v, w and w. If we assume

(17) kh™*< A, A= (4Mv)",
we then get from (15) the inequality
(18) l[e(n)[*— llw(n—1)|2+38%(n) + vk [3 D*(n) < 2k(f, u),.
Applying Cauchy-Schwartz’ inequality to the right-hand member
of the last relation we get
[ () 12— [lu(n—1)[1* < 2K [|f ()| [|w(n)]|.

Hence [ju(n)|| < [lu(n—1)]|4+2k|/f(n)| and, consequently,

()| < u(0)[+2% D [If(m)]

1<m<mn
We apply the last inequality to the right-hand member of (18) and
then we sum up the inequalities obtained in this way. As a result we get
the inequality
(19) [ (n) [+ Z {882 () +vk[3D*(1)} < O,

1<l<n
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valid for any n < N if only kh~* < A. The constant (,, as is easily seen,
may be estimated as follows:

(20) Co<(k 3 IFOI) + lu ().

ISIKN

Therefore (, is less than a constant depending only on |&F L,
and |||z,

From (19) and from |v(n)|2+ [w(n)|? < 4 |u(n)|2+ 682(n), the last
relation being an immediate consequence of the triangle inequality,
we get finally the needed basic inequality

(21) max{lpm[P+ fw@lt+um)3+6 Y SO)+8k Y D)< C
n< 1<ISN I<ISN

with ¢ = 240, valid for the solutions of system (5)-(10) if only the con-
dition (17) is satisfied.

7. Part (i) of Theorem 1 is a consequence of the fact that the homo-
geneous system of equations corresponding to (5)-(10) has only a trivial
solution and this immediately follows from identities (14) if we put there
#Ulpy = f = 0. Note that identities (14) were derived without assum-
ing (17).

8. Let u be a solution of system (5)-(10) corresponding to h and k
satisfying condition (17), and let & denote its extension defined in sec-
tion 2. It is easily seen that (21) implies the inequality

Nk

(22) sup [BL(0)[2+ [ || VE()|pdt< €

0<i<NEKk

with some constant ¢ (the same letter C will denote, when used in dif-
ferent places, different constants). In the last formula | || denotes the
ordinary L, (£)-norm.

In view of (22) the sets {} and {V} are weakly compact in L,(Q),
therefore we can choose a subsequence {h'} from {h} such that the corre-
sponding sequences {4’} and {VU'} are weakly convergent to some %
and to V%, respectively, when h’ — 0. Consider now the approximations
U’ (see section 2) of u' (" denotes that only terms of the sequence {h'}
are considered). Due to inequality (21) we can assert that the sequences
{U’} and {U;} are also weakly convergent in L,(Q) to the same limits #
and 0%|0x', respectively (see [4], Theorem 20, p. 52), when h'—0.

9. We shall show still more: {h'} may be chosen so that {U’} con-
verge strongly in L,(@)) to % when b’ — 0. This will be done by adapting
Hopf’s procedure (see [2] or [5]) to the case under consideration.
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Denote by A4 the class of all regular and divergence free vectors
with compact supports in 2. For any fixed 6*<.4" form @ in accordance
with (4) assuming A to be so small as to assure the vanishing of ¥ on s.
Now sum up, side by side, equations (5), (6) and (7), all taken at the
same t = nk, and then form the inner product (in the sense of (3)) of
- the result with k9. Transforming the terms containing second order
differences by using identity (12), we can write the result in the form

(23) (v—u, 9), = kR(n),

where E(n) is the sum of terms of the following forms: (i;, 9)),, 3 (g, 9,
and (f,d),. Here % denotes any component of u, v, w, u, whereas w
denotes either any of these four functions or the result of their shifting
at distance h parallelly to any a'-axis. The form of R(n) is independent
of n. It is easily seen that we have the estimation

(24) B ()] < Cy { D) (L+ T i(m)l) + 1 (o)1)

with a constant €, depending only on 9] and max |9 (x)| (|| denoting

Tew

Euclidean length of the vector @) that is on HVﬂ*lle(g) and sup |0% (x)].
Due to (24) and (21) we have Ze2

kl ) R(n)’g Cl(n' —n') k]
n'sn<n’’
with (' depending only upon €, and the constant of inequality (21), and
this combined with (23) leads to the inequality

(25) p(E)— () < OV —t,

where ¢ =n'k, "' = n"'k, and
(26) p(t) = (u, B)y = [U(x,)0(x)de, nk<t< (nt+1)k,
2

¢ in the last formula denoting the approximation of 9 (see section 2).

Let 3° denote a continuous function of ¢ linear on each interval
I, = [nk,(n+1)k] and coinciding with v on both ends of each I,.
The functions ¢° are, for fixed ¢ and he{h}, equicontinuous and
uniformly bounded as it is seen from (25) and from the inequality
lp(nk)| < |lw(n)||[[#]| < C. Making use of Arzeld’s theorem we can extract
from {h} a subsequence {i*} such that the funections y° (as well as o
corresponding to he{h*} are uniformly convergent on [0, T) when h — 0,

What we have now to do is just to repeat Hopf’s reasonings (see
[2]). Let 6™, m =1,2,..., be a set of vectors of class N N OHR),

strongly dense in J(£). For each m, we construct the approximation
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9" of 6™ in accordance with (4) and then "™ in accordance with (26)
assuming he{h*} to be sufficiently small, say & < h(m), in order to satisfy
the condition ™|, = 0. Let {A"™} be, for any fixed m, a subsequence
of {n'}, with all A not greater than h(m), such that the functions 3™
are uniformly convergent on [0, T) when A" — 0. Assume, moreover,
that for each m we have {h"™} < {A™Y}. The application of standard
diagonal process provides us with a subsequence of {h} (it will be denoted
equally by {k}) such that the sequence of corresponding functions ™)
is convergent for each m and each ¢ of the interval [0, T) when h — 0.
Consider the approximations U of solutions u corresponding to he{h}.
The last result implies weak convergence U —> % for each te[0, T): we

have only to note that # lies in the closure of 47, i.e. in J(£2), for each
te[0,T), and this follows from the easily derivable orthogonality of #
to gradients of all functions which are regular in 2 and vanish near 8.
On the other hand, due to results of [4] (loec. cit.), it follows from the
weak convergence U — % and from (21) that also corresponding approx-
imations & converge weakly to # for each te[0,7T). Hence and from
(22), applying Hopf’s lemma (see [2], p. 172), we deduce the strong con-
vergence of & and therefore also of U (applying again [4], loc. cit.) to %.

10. It has remained only to show that # = lim U is a weak solution
of the problem (1), i.e. that # satisfies the identity (2) for any ®e.#.
Take any @e.# and construct its approximation ¢ = ¢(x, t), for any 1,
by using formula (4). We assume additionally k to be so small that ¢|gm = 0
for any n < N and that ¢ =0 for ¢t > (N —1)k. We proceed as before
when deriving (23) with k@ (z) replaced now by (p(m, (n—l)k). We trans-
form the result (by using (11), (13) and equation (8)) so as to get

(1) (e @a— > (tay galut (X 0 (it 1), 9), — (f, ) = B*(m),

where u; = k™ '(u—u) and R*(n) is a sum of terms of the following four
different forms:

(=0, 90), ((@—0)di ), k(s ), ((@—5)o, ).

In these expressions, # and ® have their previous meaning (as in
formula (23)), v, similarly as %, denotes any component of U, v, W, U,
and g-any component of ¢ or its h-shifting. Note that #—% in each term
above denotes the difference of the same components. All functions
appearing in R*(n) are taken at the same t = nk. The number as well
as the form of R*(n) is independent of n.

@ being fixed, we have in ¢ the inequality

PCHe) () <0 for Qi =1,2,3,
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with ¢ independent of h. Making use of (21) and of the last inequality
we may estimate R*(n) by

(28) [B* (n)] < O{8(n)+8(n) D(n)+1D*(n)},

with C independent of %n. Summing up the last inequalities and then
applying Cauchy’s inequality, we get the estimate

3o
< OF'? [(kNZ Sz(n))lﬂ_'_ (Z S (‘n))uz (kZ‘DZ(n))1/2+h(kZD2(n))1i2],

where all summations are taken over 1< n < N. Hence, due to (21),
we get
(29) k‘ZR*(n)‘ < OB =C'h

with €’ independent of =.
Let us sum equations (27) over n, 1 <n < N, and then apply the

identity
D=, gl = —F D (wy g)a— (u, g}

where both summations are taken over 1< n < N. The result, when
using the approximations U and @, may be written in the form

Nk

[a [loe,—» Y v.6,— N U U,,-Q_5+Fé5} do+ [ A" (2)®(x, 0)de
k 0 1 ¥ Q2

=k 2 R*(n).
1<n<N
It suffices now to pass in the last identity to the limit & — 0, he{h},

and take into consideration (29) and the above established strong and
weak convergences of U and U;, resp., to get the desired identity (2).

11. Tt is clear that the construction of » is independent of the number
of dimensions of x-space. However, in the two-dimensional case, due to
the unicity of the weak solution of the problem (1) (see [5] or [6]), our the-
orem may be put in a little stronger form:

THEOREM 2. In the two-dimensional case the original sequence {U}
itself converges to a weak solution of problem (1) if only assumption (17)
18 satisfied.
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