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A NOTE ON THE DENJOY INTEGRAL

BY

K. KRZYZEWSKI (WARSZAWA)

This paper continues the investigations concerning the change of
variable in the Denjoy integral contained in [2] and [3]. We shall occupy
ourgelves with the Denjoy-Khintchine integral. The notation and ter-
minology concerning the Denjoy integrals are the same as in [5]. We
shall begin with the following theorems:

THEOREM 1. Let f be D-integrable on an interval [a,b] and ¢ be
approximately derivable almost everywhere on an tnterval [c, d] such that
¢([e,d]) < [a, b]. If the function G = F(¢), where F is an indefinite
D-integral of f on [a,b], is ACG on [c,d], then the function f(p)gap is
D-integrable on [¢, d] and for te(e, d]

(t) t
(1) (D) [ f(@)do = (D) [ f(o(®)pe (1) dt.
2(C) c

THEOREM 2. Let f be D-integrable on an tnlerval [a,b] and I be an
indefinite D-integral of f on [a, b]. Further, let ¢ be a continuous almost
everywhere approximately derivable function fulfilling condition (N) on
an interval [¢, d] such that

¢(le, d]) < [a, b].

Then the following conditions are equivalent:

(i) @ = F(¢p) is ACG on [c¢,d];

(ii) f(@)gap 8 D-integrable on [c,d] and (1) holds;

(iii) f(¢)@ap @ D-integrable on [c, d].

The proofs of these theorems are similar to those of Theorem 1 and
Theorem 2 in [2]. It suffices to use Theorem and Lemma 3 in [4] and
Theorem 3, p. 17, in [6] instead of Lemma 1 and Lemma 2 in [2].

Now we shall give the following definitions:

A function F will be said to be L (ACM) on a set K if F' satisfies the

Lipschitz condition on F (is monotone and absolutely continuous in
the wide sense on E). A function F will be said to be LG (ACMG) on
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a set K if F' is continuous on K and the set E is expressible as the sum
of a finite or countable sequence of sets on each of which F is L (ACM).

The following lemmas may be proved in the standard way used
in the theory of Denjoy integrals (see Theorem (9.1), p. 233, and The-
orem (10.5), p. 235, in [5]):

LEMMA 1. A continuous function is LG (ACMG) on a set E if and
only if for every perfect set E, = F there exists a portion P of E, such that F
8 L (ACM) on P.

LEMMA 2. Let F be a continuous function on a perfect set E,. If F
is not L on any portion of H,, then the set FE, of all points xeF, such
that

|\Fi, (@) 4 |F%, (@) = +oo  and  |Fz (#)|+ |Fg ()] = +oo

is dense in H,.

The following theorem is an analogue to the one proved for the
functions ACGy4 in [2] (see Theorem 4 and Theorem 5):

THEOREM 3. Let F be a function defined on an interval [a,b] and
let [¢,d] be any interval. Then the following conditions are equivalent:

(i) F' is LG on [a,b];

(ii) for every function ¢ which is ACG on [¢, d] and such that ¢([c, d])
< [a, b], the function G = F(¢) is ACG on [c,d];

(ii1) for every fumction @ which is AC on [¢, d] and such that ¢([c, d])
c [a, b], the function G = F(p) is ACG on [e¢, d].

Proof. The implication (i) — (ii) easily follows from Lemma 5 in
[4]. Since (ii) evidently implies (iii), it suffices to prove that (iii) — (i).
To do so, let us assume that (iii) is satisfied. Suppose that, to the contrary,
F is not LG on [a, b]. Then, since I is evidently continuous on [a, b],
there exists, in view of Lemma 1, a perfect set E, = [a, b] such that F
is not L. on any portion of F,. Let E, be the set from Lemma 2. Since F
is continuous, it easily follows that there exist points @y e F,,n=1,2,...,
k=1,2,...,2", positive integers sy,, » =1,2,...,k=1,2,...,2"",
and positive integers 1,, n = 1, 2, ..., such that for every integer n the
following conditions are satisfied:

(2) Bem < Bpgrm Tor k=1,2,...,2"-1,
(3)  @akn = Bakniy ANA Ty g0 = Tgp_gwn  fOr b =1,2,..., ghs,
(4) | F(@0) — F (@ar_1,0)] > U [Bokn— Bax_1,a| for k=1,2,...,2"7
1 1
(5ot 1) (81 + 1) (800 +1) " 3
for k=1,2,...,2"",

(5) ]wzk,n"“ wzk—l,nl < min ( 3" n—-1
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($o+1)(s1+1)...(8p_1+1)

1
(6) l < ?:
(7) Sk,nln la"ﬂc,n_ mzk—l,nl =>1 for k = 17 2, ceey 2n—1’
(8) ('gk,'n_l)ln |m2k,'n_'w2k—1,n| < i for k= 1, 2, “eny 211,_1’
where
max (sg,) for =n=1,2,...,
) 8y = | 1ckat™?
0 for n =0,
min - (@ogn—Tx_1 ) for n=1,2,...,
(10) by = § 1<k<z®t
1 for n=0.

Let us now put
oo of—1
= () U [@ar_1,ns Ta,n]-
n=1 k=1

In view of (2), (3) and (b) K, is a perfect set of measure zero. We
shall now define by induction, for n =1,2,... and k =1, 2,...,2",
some sets Ag(k,n) and Ao(k,n) consisting of ordered systems of =
positive integers; with each system (?Jl,z'z, ...y i) belonging to Ag(k, n)
we shall associate a closed interval C’(11 iy and with each system
(15 tgy ey in)eAo(k,n) an open interval O(11 i) We let first

Ag(2,1) = 40(1,1) = Ap(2,1) ={7'1): 4, =1,2, ---;31,1}3
Ag(1,1) = {(3,): ¢, =1, 2, ivey 83+ 1},

The closed intervals G(h) for k =1,2 and (i)edg(k,1) and the
open intervals 0(11) for ¥ =1, 2 and (zl)eA(k 1) are uniquely determmed
by the following conditions:

(11) 0(11) < 0(1,1) (@1) < 0(1,1) < O%{;‘_i_l) (1) fOl‘ ’il : 1, 2, L] 81,1’

d—c
(12) ]C(h)‘ lO(’*l)I | (°°1)l - 10(11)[ IO(QIH)' 4s8,,+1
for o;=21,2,. 81,1y
8] 1+1
(13) U 0(11) e U 0(‘1) L U 0(11)\} U 0("1) = [e, d]'

’bl_

Let us now suppose that for some posmve integer n and k =1, 2,
., 2" the sets Ag(k,n), Ao(k,n), the closed intervals O(zl in) for

12,...

(!) If P, and P, are intervals, then P, < P, means that P, is situated on the
left of P,.
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(P15 49y -y 0p) € Ao (k, ») and the open intervals Of’{;}m_“,in) for (4, gy ooy ty)
edo(k,n) are already defined. Then the sets Ag(k, n-+ 1), Ao(k, n+1)
for k =1,2,...,2""" are defined in the following way:

Ag(dk—1, n+1) = Ao(4k—1, n+1) = Ay (4k, n41)

= {(%1, %2y -+, Tny1): (19 gy eny in) €do (2, n), ingy = 1,2, ceey Szk,n+1}
for k=1,2,...,2%!,

Ag(4k, n+1) = {(@-1: oy veey 7:n+1): (1) Ty -, ?:n)EAC(ri n),
in+1:1’2,...’82k,n+1+1} fOI‘ 7621,2-,...,2%—1,
Ao(4k—2,n+1) = Ao(dk—2,n+1) = Ap(4k—3, n-+1)

={(t1y oy eylngn)? (1, 905000y ln) edg(2k—1, n), i1 =1,2,..., 8% 1041}
for %k=1,2,...,2"7,

Ag(4h—3, n1) = {(iy, day oy bugs): (iry dgy .., in) e Ag(2k—1, 1),
'in+1:1)27---,82k-1,n+1“[_1} fOI‘ k:1,2,--.72n—1.

The closed intervals Cﬁ’ﬁ'};-l---,inﬂ) for k=1,2,...,2"" and (i,,4,,...
cveytng)edo(k, n+1) and the open intervals Of‘;’fffgf___,inﬂ) for k=1,2, ...
ey 2°"hand (4, 45y vy ingy) €Ao(k, n+1) are then uniquely determined
by the following conditions:
sl sl 4h—1,m41
(14) O(’blﬂz,...,@n+1) < 0(11.@2,---,'%-;-1) = 0(11,’*2.-..,1”4_1)
4h—1,n+1 akntl
% 0(@1112,---Jn+1)< C(’Llﬂz,---ﬂn-r-1+1)

for  (iy, day ..oy in)edo(2k,n), &k =1,2,...,2"" and 4,,, =1,2,...
cees Sakn1y

O4k_1,n+1 I

1R ak,n -1 — 1H4k,n+1 = 1
(15) |C | =10 (1572550 11)

(i15%25 .05y 11) (il-iz’---’inﬂ)l = |

. |04k—1,n+1 | — 104k,n+1

((1,0gs s g+ 1) (il’iz"“’in+1+1)l - ,Of&?z----.in) l
32k,n+1 +1

fOI’ (7;1,?;2,.--,?;n)EAc(2k"n1), k:1,27.-.,2n—1 &Ild in+1=1y21---132k,n+1}

89 +1 89k »
(16) k,Cj-l 04{6’”"“ . g 2k0+104{c’79+1 . g
. (Y15t 41) (P10 1)
Tpt1=1 In+1=1
Sak, Sok
T U s R G o e S P
. ("1 ip 1) (122500t 41) T Y(inTe,..,Ty)
n+1=1 tp+1=1
for (iy, 4sy ..., 0n)eAg(2k,n) and & =1,2,...,2" 1,
~ 4k—3,mn11 4k—3,n+41 4k —2,n41
(1‘) 0(11,%2,...,ln+1) = 0(11!120---»"‘n+1)< O(hﬂzu--ﬂnﬂ)
4k—2,n+1 4k—3,mn+41
< 0(‘1,12----»"n+1) <C

(1502, .. 0Ty 1 +1)
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for (g, Gay.-vytn)ede(2k,n), £ =1,2,...,2"' and 4, =1,2,

vy Sok_1,m419

i 4k—3,n+1 — |Q¥-3.n+1 — [(H—2n+1
(18) ‘O(’L1,12,,_.,1n+1)l . 10(11,12,...,1”.1.1)] - 10(11’12’---’%—&-1)'
o 104.7C;.2,'n,+_1 I . |C4f6—-3,n+! l . 1 l 2k 1,n I
U - 11,0900yt 1 1) T TR
(st 1) (11,%95- s T+ 111) 4805 1ni1+1 (P15, Tp)

FOP [y Dgy o ) e Adg(P2B—1,0), &= 135w ;2% 00l 4y = 1, Byass
. szk-1,n+17

Sap—1,mn+1+1 Sap—1,m+1

ak—3, n+1 4k—3,n+1
(19) . U 0(11 fgpenstnt1) Y U 0(’1,12’---:1n+1) ~
tp+1=1 Tp1=1
Sop—1 —1,m+1
R . S e ofF-2mil  _ egk-ln
i (P150950s T 41) g (11720 sing1) — Y(iLigee.nsip)
tp+1=1 tp4+1=1

for (41, fay ..., in)edo(2k—1,n) and k =1,2,...,2" ",

Define now a function ¢ on the set 7' consisting of the ends of all
intervals O, i, where (iy, iy, ..., i) edg(k,n), k =1,2,...,2" and
n=1,2,...,in the following way: ¢(f) = @, if ¢ is the end of an interval
Citt.iyy- In view of (3), (14), (16), (17) and (19), the function ¢ is
well-defined. In order to prove that ¢ is uniformly continuous on 7',
let ¢ be any positive number. In view of (5), there exists positive
integer n, such that @y ,—Pp_1,n,<< e for k = 1,2, ..., 2™, Let
g = mm(O(11 iy, ...,iy)) Where (zl, gy ..., y) TUNS OVer the set Ag(k,n) for
k=1,2,...,2%and n =1,2,...,n, Now, if %, and t, are two points

belonging to T such that |[t, ——t 1| << 8, then |p(t,)—e@(t,)] < e. In fact,
from the definition of C(@l iy,...i,y 16 follows that then there exists a po-
ko '”0

sitive integer k, << 2"0 such that [,, t,] =
eAg(kq, ny). Since

( for some (47, 49, .. zno)
1’ 2’

e,
@ (T ~ 0(0(1) Og 40 )) < [@am(eg+1)/2)- 1,791 LoF(kig+13/2)m0 19
L]
where E(y) denotes the integral part of y, we have |p(t,)—¢(t)] < e.
Thus ¢ is uniformly continuous on 7. Therefore ¢ can be extended to

a function continuous on 7. We shall denote it also by ¢.

Note that
o o
(20) =Ny . U 0(11"2: )
n=1 k=1 (iy,%,...,%)
eAc(k n)

and in view of (25), (29) and (32) it follows that

2m 3\"
I U U 0(11,12, o n)l (Z’) (d—(})
=1 ("’1""2
E.Ac(k n)
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for n =1,2,... This implies that |7| = 0. Now we extend ¢ linearly
on the intervals contiguous to 7. This new function will also be denoted
by . It follows from (13), (16), (19) and (20) that the intervals Of" |
for (i, 05y ..., %) edo(k,n), 8 =1,2,...,2" and » =1,2,..., are con-
tiguous to 7. Since the set I, is of measure zero and ¢(T) < Hy, ¢ fulfils
condition (N) on [¢, d]. Now we shall show that ¢ is AC on [¢, d]. For
this purpose, in view of Theorem (7.7), p. 285 in [5], it suffices to show
that ¢’ is integrable in the Lebesgue sense on the set of points of deri-
vability of ¢. Since |7| = 0, this is equivalent to the fact that the series
of increments of ¢ over the intervals contiguous to 7' is absolutely con-
vergent. In order to prove the last condition, let us note that in view

of (11), (14) and (17) we have

% ‘
(21) A(ep; P(i’fiz....,in)) = Lag(k+1)/2),m — LeB(k-+1)/2)—1,n (%)

for (i, tsy...,0)edo(k,n), k=1,2,...,2" and » =1, 2,... Further*
from the definition of the sets Ag(k,n) it follows that if (4, ¢y, ..., i)
eAg(k,n), then

(22) u<8+1 for j=1,2,...,n—1 (n>1),
in = SE((k-+1)/2),n -
(21) and (22) imply

(23) D 1A O, i)
(i1, g, .-, )
edg(k.n)

< 8E((k+1)/2),n(80+ 1) (81 Sk 1) .. (Sn_1 + 1) (sz((k»H)jz),n — sz{(k -l-l)/2)-1,'n) -

In view of (6) and (8) we obtain

(24)  (SE@eryz),n—1) (So+1)(s,+1)...
oo (8p_1+1) (sz((k+l)[2),n— LBk 41y/2)—1,m) = 1/3n9

and in view of (5) we have

(25)  (So+1)(81+1)... (8n_y 1) (@ame 4120 — Pamicksnyjzy—1,0) < 1/3"
for k =1,2,...,2". From (23), (24) and (25) it follows that

AL
14(9;5 Oy, i) < 273"
k=1 ('!:1,’52,...,7:71,)
€A0(k,n)
This completes the proof that ¢ is AC on [¢, d]. Since we have assumed
that (iii) is satisfied, the function @ = F(¢) ought to be ACG on [e¢, d]

(®) If ¢ is a function, then A(p; P) denotes the increment of ¢ on the inter-
val P,
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and therefore also VBG on [¢, d]. We shall prove that @ is not VBG on
[¢, d] and this will yield a contradiction. In view of Theorem (9.1), p. 233
in [5], it suffices to show that ¢ is not VB on any portion of 7. To prove
this, let us note that in view of (4) we have

k,
|4(G5 O(i:fiz,....vfﬂ)) | > ln(‘”2E(<k+1)/2),n—sz((lc+1)/2)_1,n),

whence, in view of (22), we obtain
SE((k+1)/2),n
(26) > 14(G5 O, .. i) > 85 1,y b (Bam o 1,0 — Bamhs1y12)—1,0)
=1
for (’l.l,?:z,...,?:n__l)eAc(E((k—f—l)/Z), n—1), k=1,2,...,2"and n=2,3,...
This, in view of (7), implies

| SE(k+1)/2),n
(27) D 1A(G; 0k, i) > 1
{oml
for (41,9, .00y tn_1)edo(E((k+1)/2),n—1), k=1,2,...,2" and =

= 2,3,... From the definition of the intervals Oﬁ’ﬁiz ,,,,, i) and in view

of (27) it follows that the function @ is not VB on any portion of the set
T. This completes the proof of Theorem 3.
From Theorem 3 and Theorem 2 it follows

COROLLARY 1. Let f be D-integrable on an interval [a, b], and let [c, d|
be any interval. Then the following conditions are equivalent:

(1) an indefinite D-integral of f on the interval [a, b] is an LG function;

(ii) for every function ¢ which is ACG on [¢, d] and such that g([e, d])
< [a, b] the function f(zp)qa;p 18 D-integrable on [e¢,d] and (1) holds;

(iii) for every function ¢ which is AC on [¢,d] and such that
¢(le, d]) < [a, b] the function f(@)gap is D-integrable on [c, d].

The implication (i) — (ii) was proved by Tolstoff in [7] and by Kartak
in [1] under a stronger hypothesis.

We shall now give the characterization of ACMG-functions. For
this purpose we shall prove

LeMMA 3. If a continuous function ¢ fulfilling condition (N) is not
ACM on any portion of a perfect set B, , then the set E, of all points @ belon-
ging to K, such that ¢ is not monotone on the right at x with respect to E,,
18 dense in H, ().

Lemma 3 may be proved by means of Lemma 1 and the argumenta-
tion similar to that in the proof of implication (iv) —> (i) in Theorem 1
in [3]. Therefore we shall omit the proof.

(®) A function ¢ is monotone on the right at a point x belonging to a set B with
respect to this set if there exists a d > 0 such that either ¢ (z) < ¢ (%) for ZeE ~ [z, 2+ 6]
or ¢(x) > @(x) for Zel ~ [z, x} 8].
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We shall now prove

THEOREM 4. Let ¢ be a function defined on an interval [e, d]. Then the
following conditions are equivalent:

(1) @ 18 AOCMG on [e,d];

(ii) for every function F which is ACMG on ¢([e, d]), the function
G = F(p) is ACG on [c,d];

(iii) for every increasing function G which is AC on ¢([e, d]) the func-
tion G = I (¢) is ACG on [e¢, d].

Proof. The implication (i) — (ii) may be proved in a way similar
to that used in the proof of implication (i) — (ii) in Theorem 2 of [3].
Since (ii) clearly implies (iii), it is enough to prove that (iii) — (i). For
this purpose, let us assume that (iii) is satisfied. Suppose, to the contrary,
that ¢ is not ACMG on [e¢, d]. Then, since ¢ is clearly continuous, there
exists, in view of Lemma 1, a perfect set F, = [¢, d] such that ¢ is not ACM
on any portion of FE,. Further, since ¢ clearly fulfils condition (N) on
[¢, d] and therefore also on FK,, we may use Lemma 3. By this lemma
there exists a sequence {f#,} of points belonging to F,, where E, is the
set from the lemma, which is dense in #,. It is easy to see that fori =1, 2
and n, k =1, 2,... there exist points tfc,n such that

(28) thnel, for ¢=1,2and n,k=1,2,...,

(29) tn < ton < tha for m,k=1,2, ...,

(30)  @(thn) < @(thyrn) < @(ta) < @(hia,n) < @(tha) for m, kb =1,2,...,
(31) }cimt,i,n=tn for i=1,2and n=1,2,...,

(32) thorn < thn for m,k=1,2,...

Now let us define, for each positive integer n, a function ¥, on the
interval [a, b] = ¢([e, d]) as follows:

0 for » =¢(t),
Fo(x) ={1/k for @ = @(i.),

otherwise piece-wise linear so that F, be increasing.

Then the function F
O F ()
F(a) = E'———
) s M, ’

where M, = sup |F,(2)|, is increasing and AC on [a, b] (see the proof
a<e<h

of Theorem 3 in [3]). We shall now show that the function G = F(¢)
is not ACG on [e¢,d] and this will contradict the hypothesis. For this
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purpose, it suffices to prove that ¢ is not VB on any portion of the set K,
(see Theorem (9.1), p. 233 in [5]). To prove this, let us suppose that P
is any portion of E,. Then, since the sequence {t,} is dense in F,, there
exists a positive integer n, such that #, e¢P. In view of (31) there exists
a positive integer k, such that for k& > k,, the points t}‘,"o’ tt.n, belong
to P. From the definition of ¥ and in view of (30) we obtain

1
Gt n,) — G (th n e
l ( k,no) T( k, D)I > kngMnO
for each positive integer k. Since, in view of (32), the intervals [tk , i n,]
are non-overlapping and their ends belong to P, ¢ is not VB on P. This
completes the proof of Theorem 4.
From Theorem 4 and Theorem 2 follows

COROLLARY 2. Let ¢ be a continuous, almost everywhere approximately
derivable function fulfilling condition (N) on an interval [c,d]. Then the
following conditions are equivalent:

(i) ¢ 18 ACMG on [c,d];

(ii) for every function f D-integrable on ¢([¢c, d]), the function f(p)pap
is D-integrable on [¢, d] and (1) holds;

(iii) for every non-negative function f integrable on ¢([ec,d]) in the
Lebesque sense, the function f(¢)gap is D-integrable on [c, d].

The implication (i) — (ii) was proved by Tolstoff in [8] under a stron-
ger hypothesis on function ¢.

Since the following theorem can be proved in the standard way used
in the theory of the Denjoy integrals (Romanowski’s lemma), we shall
omit the proof.

THEOREM 5. Let ¢ be a continuous, almost everywhere approximaiely
derivable funetion fulfilling condition (N) on an interval [c,d]. Further,
let f be a function defined on ¢([c, d]) such that the function f (¢) @ap 18 D-inte-
grable (Dy-integrable) on [c, d]. Then the function f is D-integrable (Dy-in-
tegrable) on ¢([ec, d]).
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