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1. Let X be a complex linear sequence space, i.e. the linear space
having sequences & = {@;};_;, . of complex numbers (z;eC) as its ele-
ments. By 1; we denote the sequence having 1 on the ¢-th place, and
zeros besides.

Let now A be a linear operator acting from X into itself represented
by an infinite complex matrix (a;);;_;... . Thus the acting Ax =y
(® = {w;}, y = {y;}) of the operator A may be described by means of
the formula

Yi = 2%‘ o, 1 =1,2,...
7=1

A complex number 1 is said to be an eigenvalue of A relative to Y
(suppose Y to be a subset of X) if and only if there is ye¢ Y, ¥ # 0, such
that the equation Ay = Ay holds.

The purpose of this note is to prove the following

THEOREM. Let A = (G4); ;... be an infinite matric with a; - 0,
and suppose that there exists an Orlicz function @ such that

S,
Qi )i=1,2,. ’

Then A = 0 is not an eigenvalue of A relative to the sequence Orlicz
space ly, where the Orlicz function ¥ is complementary to @ in the sense
of Young.

<1
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Terms used above will be explained later on.
From this theorem we immediately get the evaluation

Srllhd
J Ay — A)i=1,2,...

i=1
for any eigenvalue A1 of A relative to the Orlicz space l,. Special cases

@

) >1
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of such an estimation can find an application in approximative determina-
tion of eigenvalues of certain operators occurred in quantum mechanics
and other branches of physics. Here we refer to [5], where a number
of interesting examples have been considered. Our theorem gives also
the simultaneous generalization of some theorems of papers [27-[5], [7]
and [8]. Papers [2]-[4], [7] and [8] were concerning with finite square
matrices and they contain essentially a multiple rediscovery of XIX
century L. Lévy’s theorem. Their results can be shortly formulated in
the following way: if A = (ay)i;_; . is an arbitrary n xn» square matrix
and

|a1;.,;|> Zlaﬁ[ (?:=1,2,...,W;),
1,i#i
then A is non-singular. Or equivalently: every eigenvalue of A lies in
at least one of the circles

M.—-d%l < Z[ai,-[ (’& == 1,...’)’&)
Y
in the complex plane. Theorem 2 of [5] constitutes a special case of our

theorem if one put
»
@(t):%, 1<p<oo.

2. In this section we are explaining notations and terms which have
been used in formulation of the theorem.

A continuous and convex function @: [0, co] - [0, co] is said to
be an Orlicz function if it satisfies the following conditions:

im (D(1)/t) =0 and lim (D(t)/t) = oo.
t—0 {00

To any such function @, there corresponds a function ¥, called
a complementary function to @ in the sense of Young, and defined by means
of the formula

¥(s) = max[ts—D(f)], s=0.
=0

¥ is also the Orlicz function, and @ is complementary to ¥ in the
sense of Young. The sequence Orlicz space 14 is a set of all sequences & = {x:}
of complex numbers with

(0) o = sup| > 2yl < oo,
i=1

where the supremum is taken over the set of sequences y = {y,} satisfying
the condition

D Pyl < 1.
i=1
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lg with the norm (O) (called in the sequel the Orlicz norm) is a Banach
space. In the same space we also can introduce another norm, equivalent
to that of Orlicz:

(L) @y = int {& > 0 Z D (jail k) < 1.

It is called the Luwemburg norm. Moreover, for every xely, ]|z
< |le[lg. Let now @ = {z;}ely, and y = {y;} ely (P complementary to ¥).
Then

| 2 @itis| < [l Iyl
This formula is known as the strong Hdlder’s inequality, and will
be of our interest in the sequel.
For the theory of Orlicz spaces we refer to the monograph [6]. The
lacking proofs of the facts given here can be rewritten from [1] or [6]
almost without changes.

3. A proof of the theorem. Suppose a contrario, that there exists
a point ® = {@;};_,,, . €ly such that & + 0 and Ax = 0. Without loss
of generality we may assume

(o]

ZY’ [2;])

i=1

This assumption implies ]l gy = 1 where || ||y denotes the Luxem-
burg norm in sequence Orlicz space I, (see [6], 9.22). Hence, we get by
the definition of an operator A that the equations

ai,-w,-zo (1:21,2,...)

hold and thus

Qi

@ij .
by = — x; for every ¢=1,2,...
j£l

Therefore the strong Holder’s inequality (see sec. 2) gives the follow-
ing evaluation:

a-.
;] < H { w} =s ]l
Aii)j=1,2,... @

”{'T?}? 9¢LH(W) ||{37)}j=.1 2. H(gx) = 1

Yievs,.. s iwi ey -

Obviously
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and by virtue of properties of Orlicz function we get

fed, . 2Ll

@ii Jj—1,2,... ' @
o0 00 a’i-

D () < Hodna oo 3 P (12—,
i=1 = ii)i=1,2,...

This contradicts the assumption and proves the theorem.

(1)) < I} eille Sp(

Now

<1,

@
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