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Introduction. Let X and Y be linear spaces whose points are sequences
of complex numbers denoted by x = (x,,,,...) and y = ) —
respectively. Let A: X — Y be a linear operator (not necessarily conti-
nuous) of X into Y represented by an infinite matrix A — (@), 2,]
=1,2,..., where a; are complex numbers and y = Az = (T —
is given by

(o8]
(a) Yi = 2%%‘-
7=1

If A is a matrix and X is a set such that there exists a point « # 0
of X and a number A satisfying Ax = Jz, then 1 will be called an eigen-
value of the matriz A relative to the set X (1). The point z will be called
an eigenvector of the matrix A belonging to A.

Section 1 of this paper starts with an example of a matrix A and
of two Banach spaces such that 4 = 0 is an eigenvalue of A4 relative
to one space and is not an eigenvalue of A relative to the second space.
This example has the additional property that the operator 4 defined
by a matrix (a;), ¢,j = 1,2, ..., satisfies a condition used by S. Gers-
gorin for finite matrices. The trivial example of the shift operator having
eigenvalue 1 on m but not on ! does not have this additional property.
Theorems 1 and 2 of this section contain conditions under which the
number A = 0 is not an eigenvalue of a matrix A relative to some
spaces. Their application to the operator A —AI, where I is the
identity operator on the space X, gives estimates for eigenvalues of the
matrix A relative to X.

The Theorems proved in section 2 are related to a known theorem
of Gersgorin (see [1]) from the theory of finite matrices and their proof
is similar to that of Theorem 1 in [3].

In section 3 a known theorem about the existence of an inverse

() We do not assume that A is defined on the whole of X.
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operator in general Banach spaces is used to obtain various conditions
for an operator A : X — Y, defined by (a), to be one-to-one. In particular,
the mentioned theorem of Gersgorin stating that for a finite » X » matrix
A = (a;) one has det A =+ 0 provided tha*

(b) iaii[>2|aii[y t=1,2,...,7,
j#i

is generalized to the case of infinite matrices. Since the theorems proved
in sections 1-3 are dealing with infinite matrices, one can indicate some
applications of the obtained results in quantum mechanics. This is done
in section 4 where the harmonic and anharmonie oscilators are consi-
dered. Let us finally note that the results in Theorems 1 and 2 cannot
be obtained by using known theorems in functional analysis (using
methods of functional analysis one can only obtain a result similar to
that in Theorem 2 if we assume the strong inequality < in (bj)). In the
sequel, we denote by m (m) the Banach space of all bounded sequences

& = (#,, x5, ...) of real (complex) numbers x;, ¢ = 1,2, ..., with norm
o]l = sup |z
1<t <oo

and by  (71°) the Banach space of all sequences # = (2,, ,, ...) of real
X :

o0
complex) numbers x;, for which x;|” < oo, with norm
’ ?
i=1

- /
1/p
el = (D )™
t=1

By m, (m,), I (1) we denote spaces of finite sequences @ = (2, @, ...

..., x,) of real (complex) numbers x;, ¢ =1,2,...,», and norms
2| = max |@;] for  m, (m,)
1<i<y
and

joll = (i) tor @ (I).
=1

We write also I (1), I, (I,) instead of ' (7Y, ' (T}).

1. Let us begin with an example of a matrix 4 = (a;) such that
4 = 0 is an eigenvalue of A relative to the space m and 4 = 0 is not an
eigenvalue of A relative to the space I. Incidentally the same example

will show that for infinite matrices 4 = (ay), ¢,j =1,2,..., the con-
dition
(by) |“iil>2|ai:ﬂ'|7 1=1,2,...

j#1
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(similar to (b)) does not imply in general that the operator 4 : X - Y,
defined by (a), is one-to-one.

Example 1. Let 4 = (ay), i¢,j =1,2,..., be an infinite matrix
defined by ay; =1, a;;,, = 1—1/2" and a; = 0 for j ¢ and j # i1,
and let X = Y = m. Then the operator 4 : X — X defined by (a) is,
as easily seen, a linear (even continuous) operator of X into itself. The
matrix A = (a;;) satisfies also (b,). However 4 : X — X is not one-to-one.
Indeed, for an arbitrary z, -* 0 the sequence of equations

1
Xy (1'— "2'7,;) Lpyp1 = 0

has a non-zero solution » = (x,, @, ..., ©,, ...) where

(—1"
(by) Bn = g3 €y
[{-%)
and obviously weX. Thus # = (z,, %5, ..., 2,,...), where x, is given

by (b,) and @, # 0, is an eigenvector of A belonging to the eigenvalue
A = 0 of the matrix A4 relative to the space X = m. It is a trivial con-
sequence of the subsequent Theorem 1 (see Remark 1) that 1 = 0 ig
not an eigenvalue of the matrix A relative to the space X = [,

Theorems 1 and 2 give sufficient conditions for a matrix 4 under
which the number 2 = 0 is not an eigenvalue of A relative to the space
1% (1% for ¢ >1.

TueorREM 1. Let A = (ay), i,j=1,2,..., be an infinite matriz
with a;; # 0 and let

(bs) 4= )

=117

a;;

A

<1 forall j=1,2,...

Then A = 0 is not an eigenvalue of A relative to 1.
Proof. Suppose to the contrary that there exists a point

[o.0]
& = (21, &y, ...) el such that # # 0 and Ax = 0. Then Y a;z; = 0 and
thus =1

00
Uiy
Xy = — — &j.
LAy
i

J=1,7+#
Hence

o0
AR

;] < = Jwy'lﬁ

g | @is]
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and

b?

EDNUEDNYE

i=1 j=1 7#%

i —le, = > 4yl
j=1

Since not all #; are equal to zero and 4;< 1, (b,) is impossible.

Remark 1. Since the matrix 4 defined in Example 1 satisfies (by),
it follows that 2 = 0 is not an eigenvalue of this matrix relative to I.

Let us note that if A satisfies (b;) and A is considered as a linear
operator defined on a subset of 7 according to formula (a), then by Theo-
rem 1 one gets that A is a one-to-one mapping on this subset.

It is also easily seen that a statement similar to that of Theorem 1
holds in the case of finite v x» matrices (a;),4,j) =1,2,...,» which
may be considered as operators of I, into itself. Thus if A = (ay),i,]
=1,2,...,» is a finite » Xx» matrix such that

= 11;&7

(by) 4; = -
1=1,i£]
then det A # 0 (2).
Example 2. Let

(h

b3 3
A=]|131
113

Then A; <1 for j = 1,2, 3. Thus det 4 # 0. Let us note that con-
dition (b) does not hold for this matrix A.

Remark 2. As a consequence of Theorem 1, we obtain that each
eigenvalue of an arbltrary infinite matrix A = (ay),4,j =1,2,...,
relative to the space I satisfies one of the inequalities

00

(1'1']'
iy — A

>1, j=1,2,..

1=1,5£7
If for some j, a;; = 0 for i # j one has to multiply first both sides
of this inequality by |a;;— A|. Then one gets a;; = A.
Similarly, each eigenvalue of an arbitrary finite »>» matrix (a;),
i,j=1,...,» satisfies one of the inequalities

v

(3) This can be also derived directly from Gersgorin’s theorem, mentioned in
the introduction.
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As an illustration we give the following

Example 3. Each eigenvalue of the matrix A defined in Example 2
satisfies one of the inequalities:

2>1 3+1>1
3—Al7 77 5— 2 3—i|”

THEOREM 2. Let A = (a;), ¢,j =1,2,..., be an infinite matriz
with a;; % 0 and suppose that there exists p > 1 such that

S(3

i=1 F=1j#1'

ai].pq/'p
| e

@5

Then i = 0 is not an eigenvalue of A relative to 1% where 1]p+1/q = 1.

Proof. Suppose to the contrary that there exists a point
@ = (&,, &y, ...)el? such that # 0 and Ax = 0. Then

[s']
E a,i,-m,- =0
i=1

[o9]

and thus

Qij
€X; = — — &j.
i
i=1,j 2% ¥

Hence, by Holder’s inequality

|os] < (

F=1,7 41 @ii

3

F=1,7£%

and thus for # # 0 we get

Sur (3

i=1 F=1j#¢

PP
) § !my"qr

j=1

all

which contradicts (by).
Remark 3. Let us note that in the case of p = 2 one obtains from
Theorem 2 that

(bg) if A =(ay),7,j=1,2,...,1is an infinite matrix with a;; # 0 such that
[o0] (o]

2 2

i=1 j=1,7#i

2
@ij
=l <1,

A

then 4 = 0 is not eigenvalue of A relative to 12
As a consequence of (bg) we get that each eigenvalue of an arbitrary
infinite matrix 4 = (a;),4,j=1,2, ..., relative to the space [2 satisfies
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the inequality

>

i=1 j=1,j#¢

an—l' L

2. In this section we prove some theorems on infinite matrices
related to Gersgorin’s theorem quoted above. It will be shown also that
for Banach spaces X and Y with a Schauder basis, condition (b,) does
imply that A: X — Y is one-to-one. First let us introduce the following

Definition. We say that a space Z whose points 2z = (2, 2,, ...)
are sequences of complex numbers has property () if and only if for each
& = (21, #g, ...) eZ there exists an index 4, = #,(2) such that

23, = m@X |24]

(i.e. for each # = (2,, 2,, ...) there exists a coordinate #j, With [234] = |24l
for all ¢ =1,2,...). For instance each I” space has property (l) The
space m does not have property ().

THEOREM 3. Let A = (a;) be an arbitrary matriz (finite or not) such
that (b,) holds, and let X have property (1). Then 0 is not an eigenvalue of A
relative to X.

Proof (®). Suppose to the contrary that there exists a point x
= (@,, @3, ...) # 0 of X such that
(e) Zaﬁxj =0 forall ¢i=1,2,..

j=1

Since # ¢ X and X has property (I) there exists an index i, such that

@i, = max [x;|. Then, by (b,), we have ‘
(igig) 1@ig) > X laigl lwiy] = ¥ layl fa5].
i#1g i#1g

On the other hand, by (¢) we have

(@igiy| 1] < Y laigg] las1,
i#ig
which contradicts the foregoing inequality.

THEOREM 4. Let A: X — Y be a linear continuous mapping of a (in

general complex) Banach space X into a Banach space Y. Suppose that X

has a Schauder basis consisting of unit vectors e, e,, ... and Y has Schauder
basis consisting of unit vectors e,, €,, ... and let us define for

y= Dy
=1

(®) The idea of this proof is the same as that of Theorem 1 in [3].
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the functional fie Y™ by (fi,y) = y;, (f,y) denotes the value of f at the
potnt yeY). Write a;; = (f;, Ae;) and suppose that (b,) holds for the matriz
(@), 4,) = 1,2, ...

Then A: X — Y is one-to-one.

Proof. To the points

= S«%’GWX and y = SyiéieY
i=1 i=1

we make correspond the sequences & = (x,, #,, ...) and y = (y,, ¥, ...)
of their coordinates. Then X and ¥ may be considered as spaces of se-
quences of complex numbers (denoted also by X and Y).

The operator 4: X — Y can be represented by the matrix 4 = (a;),
4wj=1,2,..., where ay; = (f;, A¢;), and the mapping A: X — Y is
given by formula (a). Since X has a Schauder basis of unit vectors e,, e,, ...,
we have for each

G

o0
r = Zm@-ei = lim Zwiei
i=1

n—00 4.1

n
that { Y ae}, n =1,2,..., is a Cauchy sequence. Thus
i=1

n—1

n
~
,‘Bn‘ - HmnenH == HZ Li;— E X €y
i=1 i=1

=

— 0 as n — oo,

It follows that X has property (I) and, by (b,) and theorem 3,
A: X — Y is one-to-one.

Example 4. Let

24rt(ms-ni
a*nm € ( )

Mm,n=—o0

be the Fourier series of a square integrable function K (s,t) for 0 < s,
t <1 and let us define y = Ax for we X = L2 [0, 1], by

1

y =y(s) = Aw = [K(s, t)a(t)dt.
0

Then A:X — X is a linear continuous mapping of X into itself.
Putting .
en = Gn('t) _ e—zmnt

and
1

(fms y) = J'e—2imnsy(s)ds, nym =0, £1, +2,...,

0
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we have (fn, 4e,) = @p, (*). Thus by Theorem 4, if

(mml > Y] |Gl

N=—00
n£mM

then 4: X — X is one-to-one. Fixing m, one can replace this inequality by

o0

@ m g mg| > 2 |@mal, m =0, +1, +2,...

N=—00
NAEM LMy

In the next following Theorems 5 and 6 we will show cases in which
the “strong” inequality (b,) can be replaced by

(e,) lai] > Y lay|  for all i =1,2,...,

and nevertheless A: X —> Y remains one-to-one.

THEOREM b. Let A = (ay) be an arbitrary infinite matric such that
for every i =1,2,... there exist infinitely many indices j = j(i) such
that a; ;i 7 0 and (c,) holds.

Let X be a space whose points are sequences, ® = (2, ®,, ...) of complex
numbers such that

lim |2, = 0.

N-—00

Then A = 0 48 not an eigenvalue of A relative to X.

Proof. As in the proof of Theorem 3, suppose that there exists a point
= (%, Xyy...) #0 of X such that Ax = 0. Since |z,] -0 a8 » — oo
there exists an index 4, such that |;| = max |z;|. Then we have by (c,)
the inequalities ¢

|@igiy @iyl = 2 | @i | = 2 | @i 5] -
S i#1g

Since @i, # 0 for infinitely many indices j(i,) and |#,| — 0, there

exists an index j, such that Gigiy 7= 0 and 271 < || - Thus

and therefore
VEZ
On the other hand, by
QigigPig = — Z Figs ¥f

i#1g

(4) One can obviously enumerate the double sequence {ams} using only positive
integers m,n =1,2,3,... as indices.
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we have
|@iyig Tig| < 2 @iy 2l
)

which contradicts the foregoing inequality.

Similarly as in the proof of Theorem 4, one can prove by using Theo-
rem 5 the following

THeoREM 6. If A: X — Y satisfies the assumptions of Theorem 4
with (b,) replaced by (¢,) and if for every i = 1,2, ... there are infinitely
many indices j = j(i) such that ay; = (fi, Ae;) #0, then A: X — Y is
one-to-one.

3. In this section we show how a generalization of Gersgorin’s theorem
and various sufficient conditions for an operator 4: X — Y to be one-to-one
can be derived from the following well known Theorem (d) (see for example,
[4], Theorem 8.7.4, p. 213):

(d) If U: X — Y is a continuous linear operator of a Banach space X
into a Banach space Y such that U~' exists and if V: X — Y is such
that
V—U !
[l I < Tk
then V~! exists.

Let now 4: X — Y be a mapping given by an infinite matrix A
= (ay), a;; #+ 0, according to formula (a), where X and Y are Banach
spaces whose points are sequences of complex numbers, and suppose
that X = Y (as a set but the norms may be different). Then the existence
of a point # = (#,, #,,...)e X such that

0
E Ay b5 = 0
i=1

and x -+ 0 implies that
_'3;7.207 t=1,2,... and & = (@, @5, ...) =0,

This can be expressed by saying that the operator I+ B, where
I: X - Y is the identity operator on X and B = (b;) is a matrix with

{0 if 47,
1 it =3,

Az
bij = (1—0y)— 0y =
i
is not one-to-one. In order to show that the mapping A: X — Y is one-

-to-one it is enough to prove (by theorem (d)) that

1Bl <

=
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This idea and the meaning of I and B will be used in the next follow-
ing Theorem 7 and one more example.

THEOREM 7. Let X = Y =m. Let A: X —~ X be an operator given
by a matriz (ay),i,j =1,2,..., according to formula (a), such that there
exists a constant 6 < 1 satisfying

(@) sup )

i#i

Then A: X — X is one-to-one.

Proof. The proof follows from theorem (d) by noting that the norm
of I"': X -~ X is equal to 1, and by (d,) we have ||B| < 1.

Remark 4. Let us note that a theorem similar to Theorem 7 can
be proved exactly in the same manner for finite matrices 4 — (ag),
t,j =1,...,v, mapping the »-dimensional space m, of all sequences
@ = (#y, Xy ..., ,) of v complex numbers x;,7 =1, 2, ..., into itself,
with condition (d,) replaced by (b). It follows that (b) implies det A == 0,
which is Gersgorin’s theorem.

Choosing different norms in the linear spaces of all sequences z
= (1, #3, ..., ®,) one can get different conditions for a matrix 4 = (a;)
to satisfy det A = 0. This fact is illustrated in the following

Example 6. Suppose that the matrix A4 = (ay),i,j =1,...,»,
satisfies the inequality

D)

t=1 j#¢

< d.

(L,;]'
Wiy

@i
~| <1.

@y

Then det A = 0 (5).
Indeed, consider the space [2 of all sequences x = (1, @3y oeey )

with norm
v
1/2
ol = ( 3 foat2)™.
=1

Then [I7'| =1 and by (d,) and the fact that [B| is not greater
than ( > [b5]%)'* we have |B|| < 1. Thus det A = 0. For instance the

=1

matrix
15 10 6
A= 520 5
3 310

(5) This follows also from (bg).
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satisfies (d,) but does not satisty (b). For the eigenvalues A of every
v X matrix 4 = (ay;) we have also

N3

t=1 7#%

2
% 1.

For example for the matrix
444
A=1141
1414

we obtain [4— 4| < V51, and this is a better estimate than the one ob-
tained by applying Gersgorin’s result which gives only |4 — 1| < 8.

Let us finally note that by considering the spaces 1% of all sequences
x = (@, @y, ..., 2,) With norm

ol = (Z @) @ =1)

and I and B as mappings of I into 7, = I’ one can again obtain that (b,)
implies detd = 0.

4. In this section some applications of the previously obtained
results in quantum mechanics are indicated. Namely, let the Hamiltonian
H of some system be given by an infinite matrix H = (hy), ¢,§ = 0, PP
considered as an operator on some set of infinite sequences. The possible
energy values of the system are the eigenvalues of H (usually relative
to 72) and the main problem of perturbation theory is to estimate these
eigenvalues. (The exact values of the eigenvalues are known in very few
cases.) This is done by writing H as an infinite series

(*) H — H(0)+£H(l)+82H(2)+...,

where H" is a diagonal matrix and & a small parameter. Then, taking
the first two or three terms of this series, one can estimate the deviation
of eigenvalues of H from those of H. The above procedure is rarely
justified since, because of the unboundedness of H®™), the series in (*)
usually does not converge. It is, however, easily seen that the theorems
proved in the previous sections can be applied to obtain strictly some
estimates on the eigenvalues of H.
We will illustrate this last statement on two examples.

Example 7. Let p and « be the matrices of the momentum and
position as defined in [2], p. 326. The Hamiltonian matrix of the harmonic
oscilator is then

H® = t(p2+a?) = (hy),
where h;; = (i-+3) for ¢ =0,1,2,..., and hy; = 0 for i #j.
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Let us now take a small perturbation of the form ex* of H©, i.e.,
let us consider the Hamiltonian H = }(p2-+2)+ ex?. One can find the
eigenvalues of H directly. However, one will not look here for the exact
values of the eigenvalues of H but instead find some estimates on these
eigenvalues. We have namely

1 0 — V2 0 0 .
0 3 0 —&¥2-3 0
1 B o
H=“2- — V2 0 D 0 —eV34 ...
0 —eV2:3 0 7 0

Thus, by Theorem 3 applied to A = H — AI (considered as an operator
on a subset of 72) we see that each eigenvalue 1 of H lies in some interval
I, where

I, = =w; %—[—%—.’B < _;:‘[]/(n_l)75+l/(n+1)(n+2)]s n=0,1,2, }

This does not give much information on 1, because for n = n(e)
large enough, the intervals I, and I,,, have a non-empty intersection.
Nevertheless, for example, for ¢ = } one can easily show that no eigen-
value i lies in the interval 1+41V2 < o < 5 _1V6. By remark 2 ap-

plied to A = H we obtain that each eigenvalue of H relative to I satisfies
also one of the inequalities

1 5 (h—1)n
eV(n+1)(n+ )J 8_1/(7_?_1)7'_21, n=0,1,2,...
2n-+5—24 2n—3 —22

Example 8. The Hamiltonian H = 1(p%-+ax2) -+ ex! is obtained
in the theory of the anharmonic oscilator, see [2], p. 387. Writing H

= (hmn), We have hy , = 0 for m—n £ 0, +-2, +-4 and H is a symmetric
matrix with

_— 1 33 ) 1
nn 'n—"'é')_%' _2— " “l"n‘l_g),

€ i
hanys = §(2n+3)l/(n—]—1)(n+2).

B = §V<n+ 1) (n+2) (n+3) (n+4),

where m,n = 0,1,2,... Applying again Theorem 3 to A4 = H— I
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we obtain that each eigenvalue A of H relative to 12 is contained in some
interval

Ly = {93; [ — hpn] < hnﬂ2,n+ hn—4,n+ hn,n+2+ hn,n+4}7 n = Or Ly 21

Thus, assuming that every such interval contains an eigenvalue
of H (this can be justified by physical arguments) we obtain some in-
formation on the eigenvalues of H.
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