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For any manifold M of class C, let #,, be the ring of all infinitely
derivable functions on M.

M is completely determined by £;,. Many notions concerning M
are defined in terms of #,,, and even the definition of manifolds M of
class C, can be formulated in terms of #;,. A big part of the theory of
manifolds, in particular of the theory of covariant differentation on M,
is indeed a theory of %,.

It is not difficult to observe that in many definitions and theorems
concerning M only algebraic properties of #; play an essential part,
viz. the fact that #,, is an algebraic ring.

This point of view suggests a possibility of the following general-
ization: Forget that #, is the ring of infinitely derivable functions.
Take an arbitrary commutative algebraic ring #Z instead of #,;. Translate
fundamental notions from the theory of manifolds of class C into the
language of the theory of algebraic rings #, as many as possible. Gen-
eralize theorems from differential geometry of manifolds to obtain the-
orems from the theory of algebraic rings.

This paper contains such a generalization concerning covariant
differentation on manifolds.

It is obvious how to generalize fundamental notions from the in-
trinsic geometry of manifolds. The set ¥~ of all differential operators in %
is a natural substitute for the module ¥ ;; of all vector fields defined
on M and tangent to M. Covariant derivative is a mapping from %" into
the set of all endomorphisms in 77, etc.

It is less obvious how to generalize the theory of submanifolds M
of a manifold N but it is also possible to make such a generalization.
Besides # and ¥ we have to introduce another module ¥ (¥ < #)
which is an abstract- substitute of the module # ', 5 of all vector fields
defined on M and tangent to N. The module %y y contains all the
necessary informations concerning the mutual connection between M
and N.
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The general theory of algebraic commutative rings, obtained in
this way, is a kind of algebra of differential geometry. However, this
algebra has also models essentialy different from the classical ones in
differential geometry.

§§ 2-13 contain the exposition of a fragment of the algebra of dif-
ferential geometry. Besides definitions of fundamental notions a few
theorems are quoted; they are generalizations of fundamental theorems
from differential geometry concerning the torsion tensor, the curvature
tensor ete. Very often the theorems are given without any proof because
their proofs can be obtained by a simple calculation and they are, in
fact, the same as in modern books on differential geometry.

§ 14 treats of set-theoretical models of the theory.

§ 1. Terminology and notation. We shall consider a fixed algebraic
commutative ring Z. It is not supposed that # has a unit element. Some-
times we shall assume that # has the following property:

(*) for every aeZ there exists a unique element be# such that
a =b+D.

The element b will be denoted by }a. If # has the property (*),
then # is said to be dyadic.

By a module we shall always understand an abelian group #° (writ-
ten additively) with a multiplication of elements of Z by elements of #7,
such that

(a) if aeZ and We#", then aWe#";

(b) (a+b)W = aW+bW for a,beZ and We¥#;

(¢) a(U+W) =aU+aW for aeZ and U, We#",

(d) a(bW) = (ab)W for a,beZ and Wew .

If # has a unit element 1, we require also that 1W = W for every
Wew".

The ring # itself is the simplest example of a module.

A module #° is said to be proper provided

(1) if aW = 0 for every We#", then a = 0.

For instance, if # has the unit element, then £ is a proper module.
Let # and #" be modules. A mapping L: # —#" 1is said to be
additive if
L(U4+W)=L(U)+L(W) for U, Wew.

L is said to be homogeneous if
L(aW) =aL(W) for ae#Z and We# .

L is said to be linear if it is additive and homogeneous.



ABSTRACT COVARIANT DERIVATIVE 253

The same terminology is adopted for mappings

(2) Lt WK oo KW = Wiy

where #°y, ..., #,_, are modules. It is obvious what we mean by saying
that L(W,,..., W,) is additive (or homogenous, or linear) in a variable
Wi, 4 =1,...,n. L is said to be multilinear or, more precisely, to be

n-linear, provided L(W,, ..., W,) is linear in all the variables W,, ..., W,.
The set of all multilinear mappings (2) will be denoted by

(3) Q(WU---:W/M Wn_1)-

Obviously, (3) is also a module with an obvious definition of addition
and multiplication. If %" is a module, then the module (% ; %) of all
linear mappings from %" into # will be denoted by #* If Uew™ and
We#w", we shall sometimes write UW or WU instead of U(W).

Let T be the smallest set such that

(e) the numbers 0 and 1 are in T;

(f) if 74, ..., Ty, are in T, » > 1, then the sequence 7 = (7q, ..., 74,,)
is in T.

Elements in T are called types.

Let #° be a module. For any type 7 in T we define the module
T-associated with W by induction as follows. By the module 0-associated
with #° we mean the module #. By the module 1-associated with #°
we mean the module %'. If v = (7y,...,7,,,) €T, then by the module
r-associated with #° we mean the module (3), where #; is 7;-associated
with #°, i =1,...,n+1.

A module is said to be associated with %" if it is r-associated with #
for a 7<T. It may happen that the same module is 7,-associated and
Ty-associated with %~ for 7z, + 7,. However, we are interested only in
the case where the mapping which assigns, to every 7T, the module
r-associated with #” is one-to-one.

Multilinear mappings (2) will be often called tensors. If all the mod-
ules %, ..., #,,, are associated with a module ¥, then every multi-
linear mapping (2) is called a # -tensor.

A tensor LelS(W ', % ;%') is said to be symmetric if L(W,, W,)
= L(W,, W,) for any W,, Wye# . It is said to be skew-symmetric if
LWy, W,) = —L(W,, W;) for any W,, Wye¥#".

A tensor Ge (W, W ; #) is said to be a scalar product on a module #°
if ¢ is symetric and, for every Ze# ™, there exists exactly one Y ¢#” such
that G(X, ¥) = Z(X) for every Xe# .

It GeL(#,# ; %), then for every fixed Ye# the equation

Z(X) = G(X, Y)
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defines a Ze#™ and the equation
(4) G(Y)=2Z

defines a linear mapping G:# —>#*. Thus a symmetric tensor G:
W XW — R is a scalar product if and only if @ is a one-to-one mapping
from. #" onto #°*.

By a basis of a module #" we shall understand any finite sequence
Wiyoooy Woe#” such that, for every Wew”, there exists exactly one
sequence a',...,a"eZ# such that

W = a]'Wl’{’“.-.—l—aan,

or shortly: W = a'W;, using the known summation convention. The
elements a' are called the coordinates of WeW .

It is easy to check that if #” has a basis, then £ has a unit element 1.
Moreover, there exists exactly one basis Wi,..., W" in #™ such that

1 if =3,
0 if ¢#j.
This basis is said to be dual to the basis W,,..., W, in # .

For any We# ™ there exists exactly one sequence a,, ..., a,e#
such that

W (W) =

W=aW+...+a,W",

or briefly: W = a;W’. The elements a; are said to be the coordinates
of Wew™.
For any # -tensor L: #" x(%*)° — # the elements

Livds — L(Wy oy Wiy W L., W),

are called coordinates of L.

Observe that if #” has a basis, then #™** can be identified with #".

By a Lie algebra we shall mean an abelian group ¥~ (written addi-
tively) with a multiplication [ X, Y] such that [X, Y]eV for all X, YeV
and

(g) [X, Y] =0;

(h) [Y,X] = —[X, Y] (skew symmetry);

i) [X+Y,Z)=[X,Z]1+[Y, Z] (distributivity);

(j) [X,[Y, Z]]+cyel = 0 (Jacobi identity).

‘cycl” denotes that, in the expression before this word, the letters
X, Y,Z should be cyclically permuted and the three expressions so
obtained should be added. Thus (j) is an abbreviation for

[X7 [Y1Z]]+IY1 [Z7 X]]+[Za [Xy Y]] = 0.
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It follows from (h) and (i) that
[X7O]:0:[07X]7 [_X9 Y]:—[Xy Y]"—_[Xr—YL
[X, Y+Z] =[X, Y]+ [X, Z].

Let ¥* and 7" be Lie algebras. A mapping L: ¥ — ¥ is a Lie
homomorphism provided that

L(X+Y) = LX)+ L(Y) and L([X,Y])=[L(X), L(Y)].

It is obvious what we mean by a submodule of a module and a Lie
subalgebra of a Lie algebra: they are subgroups closed with respect to
the multiplication under consideration.

§ 2. Z-vectors. By an Z-vector (or, simply, a vector) we shall mean
any additive mapping 0: Z -~ # such that

(1) d(ab) = da-b+a-0b for a,be.

The set of all Z-vectors will be denoted by B(#). It is not void. In
fact, the mapping from # onto the zero element of # is an %-vector.
It will be denoted by 0 and called the zero vector.

2.1. V(%) is a module with respect to the operations
(2) (0:+05)a = 0,0+ 0,0,
(3) (@0)b = a-0b.

The zero vector is the zero element of the module B ().

2.2. B(Z) is a Lie algebra with respect to the addition (2) and the Lie
multiplication

(4) [611 02] = alaa_aaala

where 0,0, is the composite of 0., 0,e B(A#), and similarly for 0,0,. More-
over, for every aeZ,

(5) [@0y, 05] = a[d,, 0,]—0,a-0,,
(6) [0y, ady] = a[0,, 0,1+ 0,a-0,.

Observe that it follows directly from (1) that if # has a unit element 1,
then

(7) 01 = 0.

§ 3. Directional derivatives. Let 0 be a vector and # a module.
A mapping V: # — #" is said to be a derivative on W in the direction 0
if V is additive and

(1) ViaW) = da-WHa-VW  for aeZ and Wew .
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A mapping V: # — #" is said to be a directional derivative on ¥
if it is a derivative on #” in a direction d. The set of all directional deriv-
atives on %" will be denoted by D(#7). It is not void. For instance,
the mapping from %" onto the zero element of % is a derivative in the
direction of the zero vector; this directional derivative will be denoted
by 0 and called the zero derivative.

3.1. D(#') is a module with respect to the operations

(2) (Vi+V )W =V WV, W,
(3) (aV)W = a-FW,

and the zero derivative is the zero element of the module D ().

Moreover, if Vi and V, are derivatives in directions 0,, 0, respectively,
then V,+V, is a derivative in the direction 0,4 0,. If V is a derivative
in a dirvection 0, then aV is a derivative in the direction ad.

3.2. D(W') is a Lie algebra with respect to the operation
(4) [Vu V,] = Vl [72— V2V1;

where V.V, is the composite of the mappings V,,V,, and similarly for
Vo Vi. If Vi,V are derivatives in directions 0., 0, respectively, then [V, V,]
is a derivative in the direction [0,, 0,]. Moreover

(5) [aV,, Vs] = a[V,, Vy]—0za-V,,
(6) Vi, aVy] = a[Vy, Vy]4 0,0V,

3.3. If V is a derivative on W in a direction 0 and LeS(W 3 W),
then Vy, = V,-+1L is also a derivative in the direction 0. Conversely, if V,
and V, are derivatives on # in the same direction 0, then there exists an
Lel(W ;%) such that V, = V,+ L.

3.4. In order that an additive mapping from # into- W be a derivative
in the direction 0 it is necessary and sufficient that it be homogenous, i.e.
linear.

As we stated in § 1, the ring £ itself is a module. It follows directly
from § 2, (1), that every Z-vector 9 is a directional derivative on 2, viz.
a directional derivative in the direction d. Thus B (%) is a subset of D (%)
(it easily follows from 3.3 or 3.4 that BV(Z) is a proper subset of D (%),
except some trival cases).

3.5. BV(X) is a submodule of the module D(R) and a Lie subalgebra
of the Lie algebra D ().

§ 4. The case where # is proper. Let IV be a derivative on a mod-
ule ¥ in a direction 0. It follows from § 3 (1) that the element da-W
is uniquely determined by V, @ and W. If the module #" is proper, the
element da is uniquely determined by V and a. In other words, if W is
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proper, d is uniquely determined by V. The mapping, which assigns,
to every VeD(#7), the unique 0e¢B(#) such that V is a derivative in
the direction 0, will be called the canonical mapping. It easily follows
from 3.3 that the canonical mapping is never one-to-one, except some
trival cases.

4.1. If # is a proper module, the canonical mapping from D (W)
into B(R) is linear and is a Lie homomorphism.

§ 5. Natural extensions. A directional derivative V' in %" determines,
in a natural way, a directional derivative on every module associated
with #°. More precisely,

5.1. Let V be a derivative on a module # in a direction 0. For every
type v T there exisls a unique derivative V., in the direction 0 on the module
T-associated with #°, such that

(a) ¢f T =0, then V, = 0;

(b) if T =1, then V., =V1;

(€) if T=(Tyy.eusTur1)y, and LeS(W 1y ooy W Wnye), where #
is the module t;-associated with W (i =1,...,n+1), then

(1) (VrL)(WM'-"Wn) =Vrn+1(L(W17---7Wn))—
(L Wiy Way ooy, W) b oo+ LWy ooy Wy,

for all WyoeWy,..., WypeW',.

Clearly conditions (a)-(c) uniquely determine a mapping V., from
the module r-associated with #” into itself. It suffices to verify that if
T = (Tyy...y Tu_r) el and V., ..., V., are derivatives in the direction 0,
so is V.. The easy proof is left to the reader.

The derivative V, is called the natural t-extension (or simply, the
natural extension) of IV on the module r-associated with # .

As we stated in § 1, we are interested only in the case where the
mapping which assigns, to every type z, the module r-associated with W
is one-to-one. In this case we can write I/ instead of I, without any mis-
understanding. After this convention

W)

Th

(2) Va = 0a for aeZ.

Formula (1) for the directional derivative of a # -tensor L can be written
in the form

(3) V(L(Wy,..., Wo)) = (VL)(Wy, ..., W)+
+L(VWyy Woy ooy Wo)+oo .+ L(Wyy oony Wy, FW,).
9.2. Let W' be a module associated with # . If Uel (W ; #'), then
V(U(W)) =WVUO)WH+UWFVW)) for Wew .

Colloquium Mathematicum, t. XVIII 17
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If L(U, W) = U(W) for every Uel(# ;#"') and every We#", then
Vi =10,
5.3. For any #-tensor LeQ(W 'y ..oy Wns (W np1y Wnys)), let
.Z(Wl’ ey Wn’ Wn+1) == L(Wl, sy W‘YL)WH-[-I
fO’i" WIGWI""’ WTL-{»IEW'H—]—I‘
Then Lel (W 1y ooy Wnir; Wnio) and
(VE)(WM ceey Wn+1) = (VL)(WU seey Wn)Wn+1-

Theorem 5.3 says that the two operations, differentiation and adding
the variable W, ,, to L, are commutative.

5.4, For any W -tensor LeS(W 1y ..., Wn; W), let
LMWy, ooy W) = L(Wy,y oo, Wa) for all WyeWy, ..., Wo_1eW s
and for a fized element W, e# . Then L*e¢L(W 1y ...y W13 W ny1) and
(PL*(Wqy ooy Waiy)
= (VLY (Wys o0y Wooys Wa) FL(Wyyeaey Wo_yy FW,).

Theorem 5.4 says that, in general, V'L* is not equal to VL, i.e. the
two operations, differentiation and fixation of a variable, are not com-
~mutative.

It GeL(#, % ; #) is symmetric and Le&(#;#"), then GL will
denote a # -tensor GLe2(# , # ; Z) defined as follows:

(4) GL(U,W)=GLU, W) for U, Wew".
Observe that for any GeS(#, #"; %)
(5) va)(u, w) =6(G(U,W))—G(I7U,W)—G(U,VW).

Thus, if G is symmetrie, so is V.
5.5. If Ge& (W, W ; R) is symmetric and LeS(W ;W), then
V(GL) = (V@) L+ GV L.
In faet, by (3),

(V(@L)(U, W) = 0(GL(U, W))—GL(WVU, W)—GL(U, VW)
=0(G(LU, W))—G(IVU, W)—G (LU, VW)
= (V@)(LU, V)+G(V(LU), W)+ G(LU,VW)—

(L
)
G(LVU W)—G(LU, VW)
— (V&) (LU, W)+6G (VL) U, W).

5.6. Let V, V., V, be derivatives on # in directions 0, 0,, 0, respec-
tively, let aeZ and let v~ be a module t-associated with W .
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aV, is the natural extension of the derivative aV (in the direction ad)
over V.

(V1) 4 (Vy), is the natural extension of the derivative V,+V, (in the
direction 0,-0,) over ¥ .

[(V)., (V)] is the natural extension of the derivative [V, V,] (in the
direction [0, 0,5]) over ¥ .

If #° is a proper module, then 0 is uniquely determined by the direc-
tional derivative I on # (see § 4). Consequently, by 5.1, V. is uniquely
determined by V itself, for every module ¥~ r-associated with #". It
follows directly from 5.5 that

3.7. If W is a proper module, and #"' is a module associated with W,
then the mapping which assigns V.eD(#) to every VeD(#") is a linear
Lie homomorphism from D (W) into D(#').

§ 6. Covariant derivative. Let % be a module. By a covariant
derivative in % we mean any mapping

(1) Viv" — D(#)

(the value of I at X e¥” will be denoted by Vx) such that
(a) ¥ is a submodule of BV(#) and a Lie subalgebra of B(Z);
(b) V is linear;
(c) for every Xe¥", Vx is a derivative on % in the direction X.

If #° is a proper module and 4 denotes the canonical mapping from
D(#") into ¥ (%), then condition (¢) can be formulated as follows:

AV =1,

where I is the identity mapping on 7.

Since this moment ¥~ will always denote a fixed subset of V(%)
satisfying (a) (the case where ¥~ = B () is, of course, admitted), and V
will always denote a fixed covariant derivative in a module %7, i.e. a map-
ping (1) satisfying (b) and (¢). The letters X, Y, Z, V will denote ele-
ments of ¥, The letters U, W will denote elements of #°, unless the
contrary is explicitely stated.

According to the convention from § 5, if #” is the module z-asso-
ciated with #°, then (V'x), will denote the natural extension of the direc-
tional derivative 'y over the module #”. Often the natural extension
(V'x). will be denoted by the symbol Vxy- or by Vx for short. Thus the
fundamental identity § 5, (1) or (3), for differentiation of ¥ -tensors
can be now written as

(2) VX(L(WU'-'aWn)) :(VXL)(W1’°-'aWn)+
+L(VXW1; e Wn)+--°+L(W1, iy VXWn)
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for any Lel(# 1, ..., Wn; Wnia)y, XV and WoeW 'y, ..., W,e# ', where
WiyeooyWayr are modules associated with #.

If#,, ..., %, are modules associated with # and LeS(# 1, ..., #au;
W#'ni1), then VL will now denote the mapping

(3) (VL)(Xa Wl}""Wn) :(VXL)(WU---’Wn)

for Xev and W, e# 'y, ..., Wye¥# .
It follows from (b) that, under the above hypothesis,
6.1. The mapping VL: V" XWX ... XW p = W y,y 18 multilinear, that
18
VLeR(¥ s W ryooey Wa; Wni1)-
VL will be called the covariant derivative of the # -tensor L.
It follows from (c¢) and 5.1 (a) that

Vg =X  for every Xe7 .

According to the general convention adopted in § 5, p. 257, we shall
often write Vxa instead of X (a) (or Xa) for every Xe¥" and aeZ. Fol-
lowing the notation from § 2-§ 5, we shall also write dxa instead of X (a)
for Xev" and ae#. Thus

(4) 0x =X for every Xe¥ .
The fundamental equation § 3 (1) can be now written as
(5) Vx(a/W) =3Xa,-W—|—a'17XW

for aeZ, Xev" and We#w . Identity (5) holds also if W is an element
of a module #" t-associated with #7, and Vy stands for (Fy),.
Notice that by the convention (4),

(6) [0x, 0r] = Ox,¥)-

The following theorem is an analogue of 3.3:

6.2. If LeR(V; (W5 7)), then V =V+Lis also a covariant deriv-
ative in W. Comversely, if Vi¥" —D(#) is a covariant derivative, then
there exists an LeS (¥ ; (W3 #°)) such that V =V+L.

§ 7. The curvature tensor. The covariant derivative V: 7 — D (#")
is not supposed to be a Lie homomorphism from the Lie algebra ¥ (see
§ 6 (a)) into the Lie algebra D(#") (see 3.2). Consequently, for given
X, Yev', the mapping

(1) RX,Y = [Vx, VI’]—V[X,Y]: W —W
is not, in general, the zero mapping. By definition

(2) .RX,yU = XVY U—VYvXU—-V[X’Y]UEW for Uew .
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7.1. The mapping Rx y: W — W is linear, i.e. Rxyel(W ;%)
for any X, Ye? . _

The letter R will denote the mapping which assigns Ry y for any
X,Yev .

7.2. The mapping R: ¥ XV — L (W' ;W) is bilinear, i.e. B 1is an
element of (¥, ¥ ; LW ;W) It is skew symmetric, i.e.

(3) By x = —Ex,r.

The mapping R will be called the curvature tensor of V.

For any fixed Y,Ze¥", Ryz is an element of the module %
= L(#"; #') which is (1,1)-associated with #°. Hence, for any Xe¥", we
can form the directional derivative Vx Ry z (more precisely, the direc-
tional derivative (Vx),Ry z, where (Vx), is the mnatural r-extension
of Vx over ' =L(#;%), r =(1,1)). By § 6 (2),

(4) (VXRY,Z)(U) = VX(RY,Z U)—RY,Z(VX U) for Uew,
that is,

(B) VxRyz=VxVyVg—VxViVy—VxViyz2)=ViVaVx+VzVyVx+VirzVx.
7.3. For any X, Y, ZeyV

VXRY,Z+ RX,[Y,Z]+ GYCI =

We recall (see p. 254) that “cycl” denotes that in the expressions
VxRy z, Rx v,z the letters should be cyclically permuted and the six
expressions obtained in this way should be added.

The proof is based on the fact that any sum followed by “-- cycl”
remains unchanged if we perform a cyclic permutation of X, ¥,Z in
a summand. Therefore

VxRy z+ cycl
=VxVyVs—VxVaVy—VxViy,z—VeV2Vx+VzVeVx+V ¥ zVx+cyel
= VxVyVag—VxVaVy—VxVyVz4+VxVzVy— Rx v z— Vix,v 2+ cyel
= —RBx v,z +cyel,

since Vix vzt eyel = Vix r.zjieya = 0 by §6 (b) and the Jacobi iden-
tity § 1 (j)-

Observe now that, by the definition (1), Rx y is a difference of two
directional derivatives: the derivative [V x, Vy] in the direction [X, Y]
(see 3.2) and the derivative V| x y,in the direction [X, ¥]. Consequently
(see 3.1) Rx y is also a directional derivative, viz. a derivative in the _
direction 0B (#) (the last property follows also directly from 7.1 and 3.4).
According to a general convention from § 5, the natural extension Rx, ypy
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of Rx y over a-module r-associated with #” will be denoted by the same
letter Ry y. By 5.5 and 5.1

(6) RX,YL - VXVYL~VYVXL_V[X,Y]L7
(7) Rx,y(L(Wl,...,Wn)) = (Rx,y L) (W1, ..., W,)+
_I"L(RX,I'W]_’ Wz,..-,Wn)+.--+L(W1,--.,Wn_l’RX,YWn)

for any Le2(# 'y, ..., W p; Wayy) and X, Ye¥", WieW 'y, ..., Woe W
where ¥y, ..., #", ., are modules associated with % .

Since Ry y is a derivation in the direction 0, we have Bxya =0
by 5.1 (a). Consequently, assuming #°,,, = # in (7) we get the identity
(7)) (BxyL)(Wy, ooy, W)+ L(Rx y Wy, Wy, ..., W,)+

F L Wy cony Waeys By v Wp) = U

for any Le&(# 'y, ..., # ;) and X, Ye¥"y, WieW'y, ..., Wye# ', where
Wiy..., W, are modules associated with # .
In particular, it GeL(#", # ; #), then
(8) (Bx,yG)(U, W)+G(Rx,y U, W)+G(U, Rx yW) = 0
for  X,Ye? and U, Wew .

For any symmetric GeL(#", # ; #) we shall denote by GR the map-
ping
(9) GRX,Y,U,W)=GRxyU,W)=G(W,RxyU)
for X, Yev and U, Wew .
7.4. For any symmetric GeL (W, W ; &),

(10) QRS (V VW , W ; R)
and
(11) GR(Y,X,U,W)= —GR(X, Y, U, W).

If Rx yG = 0, in particular if VG = 0, then
(12) GR(X,Y,W,U)= —GR(X, Y, U, W).

(12) follows direcly from (8). Observe that if VG = 0 (i.e. Vx@ = 0
for every Xe7"), then Rx yG = 0 by (6).

According to § 5 (4), for any X, Y e¥ the symbol GRx y will denote
the % -tensor

GRx y(U, W) =G(RxyU, W) =GR(X, Y, U, W) for U, Wew.
By definition, GRx y e (W, W ; %).
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7.5. If GeL (W, W ; R) is symmetric, then
(13) GRyx = —GRxy-
If moreover VG = 0, then GRx y is skew symmetric,
GRx v(W, U) = —GRx y(U, W) for U, We¥,
and
(14) VxGRy z+GRx v z+eyel =0 for X, Y,Zev.
This follows directly from 7.2, 7.4, 7.3 and 5.5.

§ 8. The case ¥" — #'. For applications to differential geometry
the most important case is when

(a) ¥ is a submodule of %,

or even the case where ¥ = # . The case ¥ =% will be discussed
later on (§ 9). Since this moment we assume that (a) holds.
By (a), the following mapping 1': ¥"X¥" - ¥,

(1) T(X,Y)=VxY—VyX—[X, Y] for X,Ye/,

is well defined. 7' is said to be the torsion tensor the of covariant deriva-
tive V. The covariant derivative F is said to be symmetric provided
T =0.

8.1. T is bilinear, i.e. TeL (¥, 7 ; W), and skew-symmetric:

(2) TY,X)=-T(Y, X).
8.2. For any X, Y, ZeV

(3) Rx yZ+ cycl = VX(T(Y,Z))+T(X,[Y,Z])—|—cycl.
In particular, if V is symmetric, then

(4) Rx yZ+cycl = 0.
In fact,

Rx yZ+cycel =VxVyZ—Vy VxZ—Vx,yZ+ cyel
=Vx(VyZ—VzY)—VyzX+cycl
=Vx(T(Y,2)+Vx[Y,Z]—VyzX+eyel
= Vx(T(Y,Z)+T(X,[Y,Z])+ Vix,rz;+ cyel
=Vx(T(Y,Z)+T(X, [Y,Z])+cycl

since V[X,[Y,Zl]—l‘eyd = Vix,17,zjj10y0 = 0 DY § 6 (b) and § 1 (j).
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83. If G (W', W ; R) is symmetric, then for any X, Y, Zey
(6) 260(VxY,Z) = 0xG(Y,Z)+0yQ(Z, X)— 0,G(X, Y)—
—VxG)(Y,2)—(VyG)(Z, X)+ (V,G)(X, Y)+
+G([X, Y],2)—G(Y, 2], X)+G([Z, X], ¥)+
+6G(1(X, Y), Z)—G(T(Y, Z), X)+G(T(Z, X), Y).
In particular, if V is symmetric and VG = 0, then
(6) 26(VxY,Z) =0xG(Y,Z)+0yG(Z, X)—0,G(X, Y)+
+G([X, Y],2)—-G([Y, Z], X)+-G([Z, X1, Y).
To prove (5) it suffices to calculate
0xG(Y,Z)+0yG(Z, X)—0,G(X, Y)

using § 5 (3), and identity (1).

8.4. Let GeL (W', W ; #) be symmetric, V be symmetric and VG — 0.
Then
(1) GR(X,Y,Z,W)+GR(Y,Z, X, W)+GR(Z, X, Y, W) =0

for X, Y,ZevV and Wew,

and
8) GR(X,Y,Z,V)=GR(Z,V,X,Y) for X,Y,Z, Vev.

(7) follows from 8.2. (8) follows from (7) and 7.4 (11-12) by a known
algebraic theorem on four-linear mappings.

8.5. If LeQ(v; SWH;w)), then

T(X,Y)=T(X, )+ LX) Y—L(Y)X for X,Yer

is the torsion tensor of the covariant derivative V — V + L.
An element Xe7 is said to be V-geodesic if X =+ 0 and Vy X — 0.

§ 9. The case of ¥" = # . In this section we assume that ¥ is
identical with %",

In that case the curvature tensor R is a ¥ -tensor and therefore we
can form the directional derivative Vy R (more precisely, the directional
derivative (Vx), R where ('y), is the natural extension of V7 x over the
module %" = L(#", #; (W, #')) v-associated with ¥, 7 —= (1,1, (1, 1))).

9.1. For any X, Y, Zev",

(1) (VxR)yz— Bx rrz+ cyel = 0.
By 5.1 (c) (or § 5, (3)),

(VXR)Y,Z - VXRY,Z_RVXY,Z—RX,VXZ-
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Consequently, by 7.3,
(VxR)y,z+cyel = (Vx Ry z+cyel)+(—Rp v z— Ry, p 2+ cycl)
= —RBx v 7+ Rxypz— Rxy,v+cycl = Rx .y z+ cycl.
It follows from 9.1 that
92. If GeR (W, W' ; R) is symmetric and VG = 0, then

(VxGR)\(Y,Z,U,V)—GR(X,T(Y,Z), U, V)+cyel = 0.

“eyel” concerns here cyclic permutations of X, Y, Z, as previously.
Let T': ("5 &(¥";¥7)) be defined as follows:

T"X)Y =T(X,Y) for X,Yev.
It follows directly from 8.5 that

9.3. If # is dyadic, then the covariant derivative V — V—3T' s
symmetric.

The covariant derivative I/ on ¥~ is said to be pseudo-Riemannian
if it is symmetric (i.e. 7 = 0) and there exists a scalar product G on ¥
such that I'G = 0.

94. Let # be dyadic. For every scalar product G on ¥ there exists
evactly one covariant derivative V on ¥ such that V is symmetric and VG
= 0.

The only V' is called the pseudo-Riemannian covariant derivative
induced on ¥~ by the scalar product Q.

It follows from 8.3, (6), that V'xY is uniquely determined by @
under the above hypotheses. This proves the uniqueness of 7. On the
other hand, the mapping I/ defined by 8.3 (6), is a covariant derivative
satisfying all the conditions required (proof by a simple calculation).

§ 10. The case where 7" is a projection of #". In this section we
always assume that the condition § 8 (a) is satisfied (i.e. ¥" is a submodule
of #") and, moreover, there is linear projection P of #  onto 7, i.e. a lin-
ear map P: # — ¥  such that

(1) PV =V for every Ve¥”
and, consequently,
(2) P(W—PW) =0 for every Wew .

The set of all We#" such that PW = 0 will be denoted by 4. By
definition, 4" is a submodule of %, and ¥  is the direct sum of ¥~ and .4,
Le. every element We#  can be uniquely represented as a sum

W= Wi+ W,,
where W,e¥” and W,e4". Namely, the only W, and W, are
Wy, =PW and W,=W-PW.
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W, is said to be the tangent component of W, and W, is called the
pseudonormal component of W.
For any X, Ye7 let

(3) ‘ VY =P(VxY).

By definition, I'X is a linear mapping from ¥~ into ¥, viz. it is the
composite
(4) Vx = PPx.

10.1. V% is a derivative on ¥ in the direction X e¥". The mapping

V*: 9" — D(¥) which assigns VieD(¥) to every Xe¥ is a covariant
derivative on ¥ .

F* is said to be the covariant derivative induced on ¥ by V and P.
Since P is uniquely determined by 47, we say also that I'* is the covariant
derivative induced on ¥~ by V and A

By definition, V% Y is the tangent component of Vx V. Let H(X, Y)
be the pseudonormal component of Vx Y (X, Ye?"). By definition

HX,Y)=VxY—-PVyxY =VxY—V%xY for X,Ye?V
and
(4) H(X, Y)ed".
10.2. The mapping H: ¥ XV — N is lnear, i.e. HeQ (¥, ¥ ; N4).
Let T be the torsion tensor of V, as previously, and let 7™ be the
torsion tensor of F*. By definition,

TX,Y)=VxY—VypX—[X,Y] for X, Yevr,
T™X,Y)=V5xY—-AX—[X,Y] for X,Ye?,
Te(V, ¥ ;%), T, ;7).

10.3. For any X, Yev~
(5) _ T(X,Y)=1T"X,Y)+(H(X, Y)-H(Y, X)).

T*(X, Y) is the tangent component of T(X,Y), and H(X, Y)—
— H(Y, X) 4s the pseudonormal component of T(X, Y).

Consequently, if T = 0 (i.e. V is symmetric), then T* = 0 (i.e. V* is
symmetric) and

H(X,Y)=H(Y,X) forall X,Ye?

(i.e. H 1is symmetric).

Let R be the curvature tensor of I/, as previously, let R* be the
curvature tensor of F*, and let B = R*— R. By definition,

Ry, yW = VxVyW—VyVxW—VixWew for X, Yey and We#',
Ry yV = VAVSV VAPV —Vix nVev for X,Y,Vev,
Rx yV = R},YV—RX,Yvé’W for X,Y,Ver.
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10.4. For any X, Y, Ve?
(6) RxyV =H(X,Y],V)—(VxH(Y,V)—VyH(X, V) —
—(H(X,VyV)—H(Y, VxVv)).
Since V'x is a directional derivative on ¥°, by § 5 we can form the
directional derivative VXL (in a direction Xe¥") for any ¥ -tensor L.

If L:#"™ - % is n-linear and L* denotes the restriction of I
to ¥, l.e.

L*Vyy ooy V) = L(Vy, ..., Vi) for Vi, ..., Vpe?,
then by a simple calculation
() (VXL*)(Vyy.ooiy V) = (WxL)(Vy,.o., Vi) +

+LH(X; Vi)y Viy -y Vo) os I Fiay oy Vigy H{ X, Vi)
for any X, V,,..., V,e?".

In particular, if GeL(#", #'; Z) and G* is the restriction of G to ¥,
(8) G'(X,Y)=G(X,Y) for X,Yevr,
then
9)  (VxG)(Y,7Z) = (VxG)(Y,Z)+G(H(X, Y),Z)+G(Y, H(X, Z))
for X,Y,Zev .

Note that if ¢ is symmetrie, so is G*.
Let Ge&(#", %" ; R) be symmetric. According to the notation intro-
duced in § 7, p. 262, let

GR(X,Y,U,W)=GRxyU, W) for X,Ye? and U, We#,
GR*(X,Y,Z,V)=@*R*(X,Y,Z,V) =G*(Rx vZ, V),
=G (RxyZ,V) for X,Y,Z,Vev,
GR(X,Y,Z,V)=G(RxvZ,V) for X,Y,Z, Vev.
By definition
GReR(V VW, W R), GR* =GR, ¥ ,9,7; %),

GReR(V , ¥,V ,V; R),
and
GRE = G"'R"—@GR.

If Ge (W, #; #) is symmetric, we say that ¥ and A4 are G-ortho-
gonal (or normal) provided

(10) G(V,W)=0 for every Ve? and We .
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10.5. If Ge&(W', W ; #) is symmetric, VG = 0, and ¥ and A are
G-ortogonal, then

(11) V*ag* =0,
(12) iof X, Ve? and WeA", then G(VxV, W)4+G(V,VxW) =0,
(13) GR(X,Y,Z,V) zG(H(Y,Z), H(X, V))—G(H(X,Z),H(Y, V)
for X, Y,Z,Ve? .
(11) follows from (9), (10) and (4). Differentiating (10) we get (12).
Using 10.4, (10), (12) and (4) we obtain (13)

10.6. If # is dyadic, GeS(# W ; R) is symmetric, V is symmetric,
VG =0, v and A are G-orthogonal, and G* is a scalar product on ¥,
then V* is the pseudo-Riemannian covariant derivative induced on ¥ by G*.

In fact, I* is symmetric by 10.3 and V*G* = 0 by (11). Thus 10.6 -
follows from 9.2.

§ 11. The case where 4" is one-dimensional. ITn this section we
assume that 7”, #”, A4 has the same meaning as is § 10, and Ge & (#", #"; %)
is symmetric, VG = 0, and ¥~ and A4 are G-orthogonal. Moreover, we
assume that there exists an N e 4" such that for every We A" there exists
exactly one ae# such that

(1) W = aN.

It is easy to see that the last condition implies that the ring # has
a unit element 1. We shall also assume that

(2) G(N,N) =1.

It follows from (1) that, for every X, Ye ¥ , there exists a unique
element A(X, Y)e #Z such that

(3) H(X,Y)=h(X,Y)N.
It easily follows from 10.2 and 10.3 that

11.1. The mapping h is linear, i.e. he (¥, ¥"; Z). If V is symmetric,
then h is symmelric.
It follows from 10.5 and from (2) and (3) that

4) GRX,Y,Z,V)=HhY,Z) (X, V)—h(X,Z)h(Y,V)
for X,Y,Z,Ve?.
Since ¥~ and 4" are G-orthogonal, we have
(D) G(Y,N)=0 for every Ye7 .
By differentiation of (5) and (2) we get the Theorem.
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11.2. For any X, Ye¥"

(6) GVxN, ¥) = —h(X, ).
If % is dyadic, then for every Xev”
(7) G(VxN,N) =0.

Now we shall prove that
11.3. For any X, Y, Ze¥V
GR(X,Y,Z,N) = (Vxh)(Y,Z)—(Vyh)(X,Z)+h(T(X, Y),Z).
Using 11.2 we obtain
GWVxVyZ,N) = GXOY(G(Z, N))—|—6Xh(Y, )+ h(X,VyZ),
GWVyVxZ,N) = 0y0x(G(Z, N))+0rh(X,Z)+h(Y,VxZ),
G(Vix,nZ, N) = 0x,v(G(Z, N))+h([X, Y1, 7).
Hence
G(Rx yZ,N) = 0xh(Y,Z)+ WX, VyZ)—0yh(X, Z)—
—h(Y,VxZ)—h([X, Y], Z)
= (VxWh)(Y,Z)—(Vyh)(X,Z)+h(T(X, Y),Z).
Suppose that V' is symmetric. We say that an Xev is principal
if g( + 0~and there is an ae# such that hX = aGX (for the meaning
of h and @, see § 1, (4), p. 2564). The element « is said to be the principal

curvature of X.
We say that an Xe?" is asympiotic if X # 0 and h(X, X) = 0.

§ 12. The case where ¥" and %" have bases. Let #" and ¥ be such
as in § 6. Suppose that the ring # has a unit element 1. Suppose moreover
that #” has a basis

(1) Figoss Vi
and #° has a basis
(2) Winwsin Wes

Let V*,..., V™ be the basis in ¥™*, dual to (1), and let W1, ..., W"
be the basis in #'*, dual to (2).
Introducing the notation
dy=Vi(Viy Vi), Tiy = W, Wy), T = WHT(Vy, V),
Rijpl = W'(Ry, v, W), ete.
we can obtain the known scalar formulas for the coordinates of the covari-

ant derivative of a tensor L: #™" X (#°*)° — &, for T4, Ri;.1, ete. The simple
calculation is left to the reader.
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§ 13. The case where Z# is linear. To obtain the full generality we
did note assume any hypotheses about the ring #. In applications to
differential geometry the ring # is linear over reals and has the unit
element, and the homogeneity of many operations with respect to multi-
plication by reals is supposed.

It is very easy to include this case to the general theory investigated
in this paper. We have only to suppose that # has the unit element and
is linear over an algebraic field #. In the sequel, when speaking about
additivity of some expressions we should additionally postulate the ho-
mogeneity with respect to the multiplication by elements of F.

§ 14. Set-theoretical models. Suppose now that # is a set of real
functions defined on a set M. We shall consider M as a topological space
with the weakest topology such that all functions ae# are continuous.
For any set A = M, the symbol #Z, will denote the set of all real functions
a defined on A such that for every peA there exists a neighbourhood B
of p in the topological subspace A and a function beZ such that a|B
= b|B.

By a differential space we shall understand any pair (M, #Z) where M
is a non-empty set and # is a set of real functions defined on M such
that Z = %, and

(%) if @, ..., a,eZ and f is an infinitely derivable real function de-
fined on »-dimensional Euclidean space, then the superposition fo(a,, ...
...y @,) belongs to Z.

A differential space (M, #) will be always conceived as a topological
space with the weakest topology such that all the functions aeZ# are
continuous.

If (M, %) is a differential space and A is a non-void subset of M,
then (A, Z4) is also a differential space. (4, Z4) is said to be a differential
subspace of (M, %).

The letter R will always denote the algebraic field of all reals.

Let (M, #) be a differential space. By a tangent vector to M at a point
peM we mean any mapping v: Z — R such that v is additive and homo-
genous with respect to the multiplication by reals and

v(ab) = v(a)-b(p)+a(p)-vd) for a,beZ.

Let M, denote the linear space of all tangent vectors at p, and let
¥ 4 denote the module of all vector fields V on M, i.e. the set of all map-
pings V defined on M such that V,eM, for every peM, and for every
aeZ the mapping Va defined on M by the formula

Va(p) = Vy(a) for peM
belongs to 4£.
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Suppose that (M,,#,) is another differential space. A mapping
f: M — M, is said to be differentiable if acfe# for every ae#,. If f is
a one-to-one mapping from M onto M, and both f and f' are differen-
tiable, f is said to be a diffeomorphism, (M, %) and (M, #,) are said
to be diffeomorphic provided there exists a diffeomorphism from M
onto M,.

The simplest example of a differential space is given by the pair
(R", &) where. & is the set of all infinitely derivable real functions defined
on the n-dimensional Eulidean space R". According to a general notation
introduced at the beginning of this section, if O is a non-empty
open subset of R", then &, is the set of all infinitely derivable real
functions defined on O. The pair (0, &) is also an example of a differen-
tial space. _

A differential space (M, Z) is said to be an m-dimensional manifold
(of class C,) provided every point peM has a neighbourhood A such that
(A, #4) is diffeomorphic to (R™, &) (or, equivalently, diffeomorphic to
(0, &), where O is an open subset of R™).

(M, Z) is said to be an m-dimensional submanifold of an n-dimen-
sional manifold (M,, %Z,) provided (M, %) is an m-dimensional manifold
and (M, ) is a differential subspace of (M,, %,).

Let (M,2) be a differential space. Assuming ¥ =% = ¥, in
the theory developed in §§ 2-12 (with a modification from § 13) we get
a model of the theory. In the case where (M, #) is a manifolds, we get
a part of intrinsic differential geometry of manifolds.

Let (M, %) be a differential subspace of a differential space (N, .#).
Let # 51, ;v denote the module of all vector fields tangent to N but defined
only on M. In other words, elements of W, x are mappings W defined
on M such that W,eN, for every peM, and for every ae.¥ the function
Wa defined by the equation

Wa(p) = Wy(a) for peM

belongs to #. Assuming ¥~ = ¥"p and #" = # 5, x in §§ 2-12 (with a modi-
fication from § 13) we get another model of the general theory. In the
case where (M, Z) is a submanifold of a manifold (N, %), we get a part
of differential geometry of submanifolds.

Observe that our general theory has also other models.

For instance, instead to consider the ring # of functions defined
on the whole M, the module of all vector fields defined on the whole M
etc., we can localize everything to a fixed point p,eM. More precisely,
we can replace # by the ring of all germs at p,, and similarly for ¥ and #".
On this way we get two local models corresponding to the two models
described above. All these models are taken from the classical differential
geometry.
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An essentially different model of the theory can be constructed
as follows. Let F be a non-archimedean ordered algebraic field. Simi-
larly as in the case of Euclidean spaces we can define the notion of infi-
nitely derivable mappings a: F™ — F and the ring # (linear over F)
of all such functions, which exist in abudance, yields a model of our
theory.

Regu par la Rédaction le 22. 1. 1966



