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OF ORTHOGONAL SERIES FOR A SYSTEM OF H-TYPE
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Let
(A) - @t a4+ ... +Fa,+ ...

be a given series with partial sums s,, and let us form the Ngrlund
transform

1 n
tnzﬁg_p nk Sk (Pn#(})y

where {p,} is a sequence of real numbers and P, = p,+ Pit+ oo +Pn.
The series (A) will be said to be absolutely summable (N y Pn) OT

shortly |N, p,|-summable provided that the series D lta—1,_4| is con-
vergent. n=t

The |N, p,|-summability implies the (N, p,)-summability, but not
conversely (see [1], p. 169).

The conditions for regularity of the method (N, Pn) are

(2) " >0 and ) il = 0(Py).
v=0
In particular, if {p,} is non-negative, then

Ty 2

N—o00 n

=0

is the necessary and sufficient condition for the regularity of the method
(N, p,) of summation.

In the present note we shall deal with the |N, p,|-summability
of orthogonal series for a system of H-type, which has been defined re-
cently by L. Leindler (see [3], p. 244). The below obtained results es-
tablish conditions under which Leindler’s theorem (see [3], Satz V,
P. 261-265) can be carried over to the case of some classes of Norlund’s
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means. The idea and the proof of the theorem presented here are similar
to the Leindler’s result.

In the sequel, we shall limit ourselves mainly to the special classes
M*(a > —1) of Norlund’s means:

A sequence {p,} will be said to belong to the class M* (—1< a
< 0),1f

(i) po>0and p,<0 for =n=1,2,...,
(ii) Pr<Pa<...<Pp<Pup1<.ony
(i) e L

n—00 _pn

A sequence {p,} will be said to belong to the class M* with
a=0, if

(1) 0<pPu1<pn O O0<pu<ppy (n=0,1,2,...),
(13) Pot+Pi+ oo P =Py 7 +o0,
(J]]) Timi 'i,t_‘_(pn_p-n—l) e

n—00 pn

An orthonormal system {y,(x)}, defined in the interval (0,1), is
said to be a system of H-type, if for every xe(0,1) the relation

(@) (@) =0 (2 <m,m <20 £y k=0,1,2,...)
holds true.
In the sequel, we shall use the following lemmas:
LEMMA 1. If {p,}eM” with o > —1 and a # 0, then

Cl(a)kpn])n-k = |Pn—kPn_pnPn—k| = Oz(a) kpnpn—k
(n=N,N4+1,...;k=1,2,...,n),
where C(a) and Cy(a) are positive constants dependent only on a, and N
denotes a sufficiently large natural number.

Remark. The expression under the sign of absolute value is always
positive if « > 0, and always negative if —1 < a<<0.

Lemma 1 is known (see [8], Lemma 4).

LEMMA 2. Let {p,}e M*, a =0, and let {g,} be a conver or concave
sequence such that {q,}e M’ with an arbitrary f > 0. If Yu, is |N, p/-
summable, then it is |N, r,|-summable, where

Ty = Zpkq”‘k and  {r,}e M7,
k=0

This lemma is also known (see [9], Theorem 1).
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LeMMA 3. Let {R,(x)} denote a system of step-functions defined in
the interval (0, 1). Moreover, let J (n) (s =1,2,...,8,) denote the intervals
in which R, (x) is a constant function, n = 1,2, ...

If for any m > n the condition

f sigh R, (x)de =0 (s =1,2,...,8,),

Jg(n)

s satisfied, then for every real numerical sequence dy,d,, ..., dy there
exists a simple set By (1) such that for xeE; the following inequalities
hold :

N
|2 @@ > 1y s Bys(@)] (k= 0,1,...,¥—1)
1=1

and

s (N —k—1)|

By (N —k—1)] = =5

(k=0,1,2,..., N—1; s =1,2, ..., sx_x_1; J.(0) = (0, 1)).

This lemma is known (see [3], Hilfssatz I, p. 246-249). In the proof
of this lemma L. Leindler has given a construction of a system {y,(x)}
of H-type. When taking yx,(x) =r,(2) (n =0,1,2), where {r,(x)} is
the Rademacher system, it will be assumed that the step-functions y, (z)
have been already defined for » = 0,1,...,2% ¢ > 1, so that they form
a system of H-type. Next, it will be proved that they form a system
of H-type for n = 0,1, ..., 2°t", Hence it follows by complete induction
that {y,(x)} is an infinite system of H-type.

Let {a,}, v = 0,1, ..., be a sequence of real numbers and let {p,(2)},
v=20,1,..., be an orthonormal system defined in the interval (0, 1).
Let us denote by t,(x) the n-th (N, p,)-mean, with {p,}eil*, a > —1,
of the series

(1) D avpy(@).
V=0
Further let
gMm41
f
Amz{ b3 a,i}” (m=0,1,...).
n=2M1

Now, we can prove the

(') i.e. By is a sum of a finite number of intervals.
(3) |H| denotes the Lebesgue’s measure of the set H.
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THEOREM. Let {p,}eM®, where a > —1. The series (1) is |N, pyl-
summable almost everywhere for every system {g,(x)} of H-type if and

only if

oe]
A
(2) Y=t . ey )
Pyn
m=0
and
[o.e]
(3) Map<oo if a>0.

Proof, Sufficiency. Let —1 << a<< 0. Writing

Wao = Pn_oPrn—PnPa_v (v=0,1,...,m; 0 =1,2,...),

22 S’wfmw)]dm D l'.fv;—'

m=01=0 y_gli1 n=max(2"™+1,v)

g+l gm+1

DIV Y ([wwaf]" S

m=0 =0 v=2ly1 O n=max(2™+1,)

Now, we examine two cases: 1) 1<»< 2™ " and 2) 2" '<o<n
In the first case we have 2'<o<2"' (1=0,1,...,m—2) so that
20 < 2™ < n, whence n—wv >wv. It is easy to venfy that

a) nP, o for n >N (a > —1) (3),
P,/n\ for each natural n (—1<a<1).

() The letter N denotes here a sufficiently large natural number.
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In view of these properties of the sequence {P,} and by Lemma 1,
it follows that

oM 1 - gM+41 oMm+1 P
2 | n:i[_ = 0(1) 1 UPnPn v —0(1) 2 VL y_y
Py Py, P, P, , nPp(mn—ov+1)
n=max(2"41,v) n=2M41 n=2My1
gM+1
Pm-1 1
oz N <o
< ( ) 2')11—1 nPn< ( )
n=2M41

because n—ov > 2™,
In the second case we have 2" ' < v <n so that 0 <m—v<3-2™ 1,
and, by the Raabe criterion, it follows that

gMm41 W 1 gM41 P
L 1 -
| n,’u[ <0(1) n—v
Z P,P._, Py Z n—ot1
n=max(2™41,v) n=max(2™+1,v)
o0
1 L 1
<0(1 = 61
<0 ).Pz'm 14 k—l—l (1) .P2m—1

Baging on these estimations, we write (omitting the argument x)

[o%s) oo Mm—2 2m+1

2 f!t —ty|ldz< 001 [222’—’"A1{”=%11,,}1’2+
00 i
;(sz* ){ 2 I,,}”Z]
= v=2M_1

1) [22’A122-M+§ ﬁ;‘n] = 0(1)”02:0/1 ;{2”; < o0,

where I,, (2" < n < 2™*') denote the subsets of (0, 1) on which ¢, (x) + 0.
Thus we have proved the sufficiency of (2) when —1 < a< 0.

Passing to the case of a = 0, we notice that 0< Wa,o/PnPy_1
< Pn_v/Pn_,. Hence we get in the first case that

gm+1 gM+41 2m+1
2 |Wn,v| < prA—v 1) Z _1;
m PnPn—l m P'n 1 m
n=max(2™41,7) n=2M,1 n_z +1
Pa 1
<01 2™ < 0(1)2™ !
W5 52" < 0()

2l<o<2", 1=0,1.,..,m—2).
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In the other case, we have

g1 3am—1

D Worl 01y N opo=oa
PnPn—l P2m71 Sommoy e = ( )

n=max (2"41,v)

In view of the last two estimations, we find that

gm+1 m—2 gm+1

[Z"’{ 3 B S ave St 4] 3 1]
m=0 4_ 2™M 11 m= v=2M411
Z;Am< +o0

Thus we have proved the sufficiency of condition (3) for a = 0.
Hence, applying Lemma 2, condition (3) follows for « = 0; it suffices
to choose a convex or concave sequence {q,} such that {g.} e’ with
an arbitrary g >0, and to apply Lemma 2.

Necessity. Let {y,(x)} be a System of H-type, and let #,(xz) denote
the n-th (N, p,)-mean of the series } a,, y, (@), with {p,}eM", —1 < a < 0.

n=0
Moreover, let M|, (x)—#, ,(v)] < oo almost everywhere in the interval
(0, 1). =t

Let us take ¢ = 3722780, *(a)0}(a), where C,(a) and C,(a) denote
the constants mentioned in Lemma 1. In view of Egoroff’s theorem
there exist a measurable set £ < (0, 1) of measure |F| > 1—¢ and a con-
stant M such that

Q@) —ta(@)| < M (zeB).
Hence it follows that
(4) Zfltn )— s (2)| dw < M| B

Let m be an arbitrary natural number and let 2™ < n < 2™, We
take

ol+1 W
Ry(x) = o B s e 1=0,1,...,m—1
() 1 PnPn~1a X () ( ) s M )s
v=2%+1
5w
B _ n,v , )
n () PnPn_l%x (@)

v=2M41
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Applying Lemma 3 to the functions R;(xz) (I =0,1,...,m) with
N =m+1 and k=1, and taking into account the fact that W, ,
(v =0,1,...,n; n =1,2,...) is of constant sign, we find that

'ZP 17):;1 o 1o(2)) = {Z Fyla

Denoting by F, the corresponding set defined in Lemma 3, we can
write

n
| Wa,ol

m( )| = PnPn_la”xﬁ(m) .

=M1

ngz: l [t ()~ B () | dev

o 2Mm+1

S IPEeer

M=0 pogM ) EynE " y_gm

o oMl
IPRIENEN Z () o
m=0 n=2m+1 E]. El—Elf’\E 2'm,
o 2Mm+1

= 5 (Was
>3 3 (D st f 1el) 0~ VeCula)pa o] 5" )

m=0 n:2m+1 .,,:2m+1

00 2m-+1
VPP a’ . A
22( ~0i(a 2 Z PP, lvAv — 2783701 (o) |l o P:n)’
m=0 N1 v=gM ]

where «, = (n-+1)p,/P,. Since

oM 41 oM 41 gMm4-1

9 PnPnv 2 \ lan] | Pa—sl

Z b P, e nP

n=2M11p=2M11] ne el n=2My1 n=1 "

aMm+1 941

2-2" 1 Py z Pre > p

N—e 2m+1 n=2v
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for m > m,, where m, denotes a sufficiently large natural number, we
can finally write

o0 - A
E ! - _ » » .
n=2 Ef e ol = m;;m —277) [a]poCy(a) Pym

_ polalCy(a) N Aw
o 95 Z

Pym

m=m0

Thus by (4)

A
tp*“<°°’

2
IlMS

which proves the necessity of condition (2) for —1 < a<< 0. Now, we
pass to the case of a > }. Here the situation is similar to that in the last
case. Suppose that the functions R;(x) (I = 0,1, ..., m) have the same
meaning as in the former estimations. Applying Lemma 3, with N = m
and k = 2, and denoting by F, the corresponding set, we find after many
abbreviations that

M[ElZfltn — 1 (0)|da

00 a1
>Z 2 f P B o ol) |
m=0 p_gm 1 H v=0 net

>3 fl %{Tavmw) du

m=0 n:2m+1 E2f\E ,n=2m—2+1

0 oo
m=0

m’mﬂ

Hence it follows that >'A4,, < +oo.
m=0

This proves the necessity of condition (3) in the case of a > 1.
Similarly, the necessity of condition (3) follows also for 0 < a < }. Indeed,
let us suppose that the series (1) is |N, p,|-summable (0 < a < 1) almost
everywhere for all systems of H-type. By Lemma 2, it is also |N, 7,/

n

summable with {r,}eM**’ and a+p > 1, where r, = kZ;Pan_ky and
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{¢n} satisfies the assumptions of Lemma 2. Thus D' 4,, < co, and we
m=0

conclude that (3) is the necessary condition for 0 < a < 1. This fact
completes the proof of the Theorem.
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