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ON A CERTAIN FUNCTIONAL EQUATION

BY

M. KWAPISZ (GDANSK)

In this paper we shall consider the functional equation
(1) f(p) =supF(p,q,f(T(p,q)), F(O) =0,
a

which is a generalization of that considered by Bellman [1]. We shall
give some theorems on the existence and uniqueness of solutions of this
equation. A theorem on the stability of solution will be also established.
Our results will be obtained by the method of successive approximations,
the general concept of which was given by Wazewski [3].

1. We introduce the following

Assumption H,. 1° The function F(p,q,z) is defined for p
= (P1y++eyPm); PeD = R™, qeS = R', weR', where D is some region
in R™, containing the element @ = (0,...,0) and § is an arbitrarily
fixed subset of R!.

2° For any (p, ¢, x)eD X R' X R' we have F(p, q, z)eR!.
" 3° For any ¢eS the function 7'(p, q) is a transformation of D into D.

4° F(©,q,0) =0 for any g¢eS, and F(p,q,0) considered for
geS and those peD for which |p| <e¢,, where ¢, an arbitrarily fixed
positive number, is uniformly bounded.

5° There exists a non-negative function w(u, v) defined for »,»> 0,
which is non-decreasing and continuous with respect to » and o, fulfils
the condition w(u, 0) = 0, and, moreover, for any (p, q, #;)eD X R' X R,
i+ =1,2, we have the inequality

(2) [F(p, q,2)—F(p, q, 2)| < o(pll, |2,—2,]).

6° There exists a non-negative and non-decreasing function a(u)
defined and continuous for # > 0 and such that

(3) IT(p, Il < a(lpl), a(0) =0,
for peD and qeS.
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Assumption H,. 1° There exists a non-negative and non-decreas-
ing solution #(¢) of the equation

(4) u(e) = (e, u(a(e)))+v(e), u(0) =u(0+) =0,
defined for ¢ > 0, where

v(c) = supsup|F(p,q,0)], peD, qeS, ¢=0.

pli<e ¢

2° In the class of functions satisfying the condition 0 < u(e) < %(e)
the funection u(¢) = 0 is the only solution of the equation

(5) u(c) = w(c, u(a(c))).

By Bellman’s argument [1] (p. 144-145) one can obtain the following
Lemma 1. If

gi(f’)=SgpFi(pfq7fi(T(prq)))7 1=1,2,

then

9, (P)— 92(P)| < [sup Fi (P, 4, /i (TP, 0)) — Fa (P 0, (T (0, 0))|-

q

Now let us construct a sequence {u,(c¢)} by the relations

(6) Up(0) = u(c), c=0,
Unpq(C) = a)(G, u,,(a(o))), n=0,1,...,¢=0.

We have

LEMMA 2. If the assumptions H,, 5° and 6°, and H, are satisfied,
then :
(7) 0 < upyy(0) S Uup(c) <ufe)y, n=0,1,...,020,

limu,(¢) =0, ¢=0,

Nn—>00

and the convergence is uwiform in each bounded set.
Proof. From relations (4) and (6) we get

U (0) = w(o, uo(a(c))) = w(c,a(a(o)))
< w(c,ﬁ(a(c)))-l—v(o) = 7(e) = uy(c).

Further, we obtain (7) by induction. But (7) implies the conver-
gence of the sequence {u,(c)} to some non-negative function w(c).
According to the continuity property of the function w (%, v) the function
w(c) satisfies equation (5). Now from Assumption H,, 2°, it follows that
w(e) =0.
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The uniform convergence of the sequence {u,(c¢)} follows from the
monotonicity property of that sequence and of all functions wu,(c).

2. We shall solve equation (1) by the method of successive approx-
imations. Put

fo(p) =0, peD,
(8)
fupr(p) = sgpF(p,q,fn(T(p,q))), peD, m=0,1,...

We have
LeMMA 3. If assumptions H, and H, are satisfied, then

(9) sup fu(p)| < 7@(¢), peD, mn=0,1,...,

Ipll<c

where w(c) is the solution of equation (4).
Proof. We see that

sup [fo(p)| = 0 < u(e).

Ipii<e

Further, if we suppose that

(C)’ pe_D,

|

sup | fa(p)| <

Ipl<c

then

fusa (D) = fsgpF(p, 0, /u (T2, 0))
= [sup{[# (p, 4, (T (25 0)) = F (2, 4, O] + F (2, 4, 0)f
<sup[[F (p, ¢, /u (L0, @) = F(®,4,0) +1F (0, 4, 0)]
< supo (lipll; [fu (TP, q))\)+s1qxp|1ﬂ(p, g, 0)]

< o(e, a(a())+v(e) = a(e).
Hence we get

Sup | a1 (p)| <%(e), peD.

[IPll<c

Now, we obtain the assertion of Lemma 3 by induction.
LEMMA 4. If the assumptions H, and H, are satisfied, then

(10) SUP | fayr (D) —fa (D) < Un(c)

Ipi<e

for peD, n,r =0,1, ..., where u,(c) ts defined by relation (6).
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Proof. By Lemma 3 we have

sup |f»(p)—fo(p)| < %(e), r=0,1,...,peD.

Suppose that
sup |fr+n(‘p) _fn (p)l < un(c) .
Ivj<e

Take
forsa(®) = 5uDF (P, 4, forr (T2, 0)

Fani(p) = sgpF(p, q,f2(T(p, ).
Lemma 1 and inequalities (2) and (3) give

|forrs1(P) —Frpr (D))
< SgplF (_’1_9, 97fn+r(T(p; 9)))‘F(p’ q’fn(T(Py Q)))‘

<sup o (Iplls [fasr (T, 0) =1 (T (2, 0))

<o (c, un(a(c))) == U pq ()

Hence

SUP | fryry1(P) — i1 (D) < Uy (0).

IPli<e

Finally, we get the assertion of Lemma 4 by induction.

3. Now we can formulate the following

THEOREM 1. If Assumptions H, and H, are satisfied, then there
exists a solution F(p) of equation (1), being the limit of the sequence {f,(p)}
defined by (8). The sequence {f,(p)} is uniformly convergent in any bounded
subset of D. The estimations

(11) sup | (p) —fu ()| < tnle), n=0,1,...,
[Ipl|<c
and
(12) Sup[f(‘p)l <u(c), peD,c=0,
Ip||<c

hold true. The solution f(p) is unique in the class of functions satisfying
relation (12).

Moreover, if F(p, q,x) and T(p, q) are continuous in p D uniformly
with respect to qeS, then f(p) is continuous in D.

Proof. The uniform convergence of the sequence {f,(p)} follows
from (7) and (10) (Lemmas 2 and 4). If r tends to +oo, then (10) gives
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estimation (11). Estimation (12) is implied by (9). Now we prove that
f(p) satisfies equation (1). Indeed, for |p|| < ¢, peD, we have

|7(p)—sgpF(p, ¢, HT(p, )

N

F(P)—fua (D) + lsgpF(p, 45 Jo (T (p; 0) —su0 F (p, 0, ] (T (2, 0)))|
< thnya(0)+ supw (Ilpls [£a(T (2, @) =TT (2, 0)))

< un+1(c)"|_ w (0, Uy, ((L(O))) < 2un+1(0)-

Now if n - co, we get the equation
f(p) = supF(p, q, }(T(p, 0)),
q

that was to be proved.
To prove that the solution f(p) is unique let us suppose that there
exists another solution f(p) such that f(p)# f(p) and
sup|f(p)| < a(e).

Imj<e
Now we have

@) =Fo(p)] = [sup P (p, 4, (T, 0))|
<sup|F(p, 0, J(T (0, 0)) = F (2, ¢, Ol + 50 |F (2, 0, 0])
< sgpw(upu, 1F(T(p, ) +o(e)

< m(c, ﬁ(a(c))) +o(e) = 7(e).
Further, we get

Ipl<e
by induction and from here it follows that f(p) = f(p). This contradiction
proves the uniqueness of f(p). Finally, we observe that if F(p,q,x)
and 7T(p, q) are continuous, then all functions f,(p) are also continuous.
Now the continuity of f(p) follows from the uniform convergence of
the sequence {f,(p)}. Thus the proof of Theorem 1 is complete.

Remark. Observe that for proving Theorem 1 it is sufficient to
agsume that inequality (2) is satisfied only for |x;| < %(e).

4. We give here a theorem on the uniqueness on the whole of solu-
tions of equation (1).
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THEOREM 2. If assumption H, is satisfied and the function u(c) =0
18 the only non-decreasing solution of the imequality

(13) u(e) < ofe,ufafe)), u(0) =u(0+)=
then equation (1) has at most one solution.
Proof. Let us suppose that there exist two solutions f(p) and f(p)
of equation (1) such that f(p) # f(p). Put
m(c) = sup|f(p)—f(p)| #0, peD.
Ipli<e

By Lemma 1 we get

1f(p)—f"<p>|<sgp}F(p,q,f(T(p,q))) F(p,q,f(T(p,0))|

<swpo (Ipl, [F(7(, 0) =7, 0
gw(c,m(a(c))).

Thus we have m(¢) < w(c, m(a(c))), and by (13) we conclude that
m(c) = 0, i.e. f(p) = f(p). This contradiction proves Theorem 2.

5. In order to obtain a theorem on the stability of solutions of
equation (1) let us consider the second equation

(14) g(p) = squ(p, ¢, 9(T:(p, ), 90 =0,

where the functions @ and T, have the same properties as ¥ and T, as
given in assumption H,.
Suppose that there exists a solution g(p) of (14). ‘Set

(0)—S“psup!F(p’Q:g( (P, 9 )“G(p7459 (1’1Q)))la

wi<e a

(15) %o(¢) = sup|f(p)|+sup|g(p)l,

Ipl<e |pl|<e

Zny1(0) = w(c,zn(a(c))) +-7(6), 7 =0,1,..

Now we shall prove the following

THEOREM 3. If assumption H, is satisfied and

1° there exists the limit z(c) of the sequence {2,(¢)} as n — oo,

2° f(p) and §(p) are solutions of equations (1) and (14), respectively,
then
(16) sup |f(p)—g(p)| < Z(e),

Iipjl<e
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and z(c) is a solution of the equation

(17) u(e) = w(c, u(a(c))) +w(e), e=0.

Proof. By Lemma 1 we get
F(2)—3 ()| <sgp)F(p, ¢, 1T, 0)—6(p, 0, 7(T:(p, 0)))|

< Sl;.p [\F(p, q, f(T(pa Q)))_F(p’ q, g(T(ﬂp? Q))) ‘ =4
+ | (p: 09T, 0)) =6 (p, 0, 7(T2(2, 0)[]

Thus for ||p|| < ¢ we have
F(2) =) < sup o (Ilplls [F(T (@, @)= 3(T (2, @) +75(c).

Put
z(c) = sup|f(p)—g(p)l.

Ipll<e

Now the last inequality implies
z(c) < w(c, z(a(c))) +7(c).

Whence, in view of the inequality
#(e) < sup|f(p)|+sup|F(p)| = 2(c),

lIpjl<e Ipl<c

we get by induction that
2le) < #u(e), n=0,1,...

Now inequality (16) is implied by the last one as n — oo.
Remark. If we suppose that (17) has the unique solution w(e),
then instead of the assumption on the convergence of the sequence
{#n(c)} we can suppose that there exists a function w,(¢), w,(0) = w,,

w(0-) = 0, satisfying the inequality
wo(¢) = (¢, w(a(e))) +max [5(c), 2(¢)].
Indeed, we mnow have =z(c)<z,(c) << w,(c). By setting wy ()
= w(o,wn(a(c)))+5(c), n=20,1,..., we get by induction that z,,(c)
< Wy (€) < wy(e) < wo(c), whenece z(c) < wy(c), n =0,1,... From here,
if n - oo, it follows that z(¢) < w(e), where

w(e) = limw,(c)

is the solution of equation (17).
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6. Now we are going to congider a special case of the function
w(u,v). We assume

(18) w(u,v) =k(u)y-v, k(u)=0.
LEMMA 5. The condition
(19) N kea(e)v(an(0)) < +oo,

where ay(c) = ¢ and a, ,(¢) = afan(c), n =10,1,...,

Fole) =1, Ta(0) = [] Blae), n=1,2,...,

18 necessary and sufficient for the equation

(20) u (o) = k(e)u(a(e)+v(c)

to have a non-negative solution u(c).
If (19) is satisfied and u(c) is any solution of (20) such that

kn(c)ﬂ(an(c)) -0, n-—> oo,

then

(21) (o) = D ka(c)v(an(e)).

n=0

Proof. Necessity. If % (¢) is any solution of (20), then we get by
induction the equations

n

(22)  @(o) = D ki(e)v(ai(0)) +knyr (O (@nsn(€)), n=0,1,...,

1=0

whence

n

D ki(e)v (ai(e) < @ (o).

1=0

By letting n — co we get (19).

Equation (21) follows from (22) because the second part of the
right-hand side of (22) tends to zero with n — oco.

Sufficiency of (19) is obvious.

LEMMA 6. If w(c) is of the form (21) and the function u(c) satisfies
the inequalities

(23) u(e) <a@(e), u(c) <k(e)u(a(e)),
then u(c) = 0.
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Proof. From relations (23) we get by induection the following in-
equalities:

(24) u(€) < hu () aa(0) < Kale)T(an(e)), 1 =0,1,...

Because #(c) is a solution of (20), equations (22) hold true, and,
in view of (21), we have

kn(c)ﬂ(an(c)) -0, m—>oo.

This and (24) imply u(¢) = 0.

These considerations and Theorem 1 imply
THEOREM 4. If assumption H, is satisfied and
1° (u v) has the form (18), and

20 Zk ) (@ (c) < oo, where

v(¢) = supsup|F(p, ¢,0)], peD, qe8,

Ivj<c «a

then there exists a unique solution f(p) of equation (1) with the following
properties:

sup |f(p 2 kn(c)v (an(0)),

IIp<e n=0

(o0}

sup |f(p Z i(e)v(ai(c)

ml<e =

Now Theorem 3 implies
THEOREM 5. If Assumption H, is satisfied and
1° w(u,v) is of the form (18),
2° J(p) and §(p) are solutions of equations (1) and (14), respectively,
and
3° kn(€)2o(an(c)) >0 as n — oo,
then
sup |f(p ko(c)vlay(c)
lIplj<e Z )3{an(0),
where z,(c) and w(c) are defined by relations (15).

Remark. Both Bellman’s theorems ([1], p. 145-148) on the exist-
ence and uniqueness of solutions of special cases of equation (1) (the
so-called first and second kinds) are implied by our Theorem 4.

We get the first Bellman’s theorem by setting

k(e) =1, a(c)=ac, 0<a<]l,

Colloquium Mathematicum, t, XVIII 12
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and the second one by setting
k(e) =%k, O0<k<1l, alc)=c.

But our Theorem 4 is true in many other cases, for instance in the
case where

vie) =c¢, k(c)=k, k=0, a(c)=ac, a>=0, ak<]l.

Sobieszek’s [2] result can also be obtained from our Theorem 4.

7. Now we shall consider the problem of the uniqueness on the
whole of the solutions of equation (1).
Theorem 2 implies the following

THEOREM 6. If assumption H, is satisfied and o(w,v) is of the form
(18) and one of the conditions
(a) k(¢) <1 and there ewists a ¢,> 0 such that a(c) < c for ¢>e,,
(b) k(c) <1 and a(c) < ¢ for any ¢ >0,
s satisfied, then there ewists at most one solution of equation (1).
Proof. According to Theorem 2, in order to prove Theorem 6 it

is sufficient to show that w#(c¢) = 0 is the only non-decreasing solution
of the inequality

(25) u(c) < k(c)u(a,(o)),

satisfying the condition %(0) = u(04+) = 0.

Let us consider conditions (a) and (b) in turn.

(a) It follows from this condition that for any ¢ > 0 there exists
a constant M (¢) such that

an(c) < M(e), n=0,1,...
On the other hand, inequality (25) implies that
(26) u(e) < kn(e)u(an(c)), n=0,1,...
Thus, by the monotonicity properties of k(c¢) and u(c) we get
w(e) < kn(M(c)u(M(e), n=0,1,...,

and, because of the inequality %(c) < 1, we finally have u(c) = 0 for
c=0.
(b) The inequality a(c) < ¢ gives the relation lima,(¢) = 0. Inequal-
N—>00
ity (26) yields u(c) gu(an(c)). This implies #(¢) = 0 because u(¢) — 0
with ¢ — 0. Thus the proof of Theorem 6 is complete.
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