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SOME PRESERVATION THEOREMS
BY

B. WEGLORZ (WROCLAW)

In this paper we prove some conjectures (Theorem 1.2 and Corollaries
2.4 and 2.5) raised by Jan Mycielski and C. Ryll-Nardzewski in 1961
which were already proved about that time by D.S. Scott but never
published. A typical result (Theorem 1.6) says that an elementary sen-
tence is preserved under endomorphisms if and only if it is logically
equivalent to a conjunction of disjunctions of positive sentences and
universal sentences. We shall use the general method of H. J. Keisler (see
[2]) which is by now a standard tool for treating such problems. We
do not know the original proofs of D.S. Scott. We only know that in
his proof of 1.2 he used a certain generalization of the Craig-Lyndon
interpolation theorem; our proof is different.

1. Operations on structures. First we prove some theorems concer-
ning particular situations which will be generalized later in Theorem 1.8.

Let 2 = (A, RNionjom and B = (B, R} dinjom be two similar
relational structures. An n-tuple of functions h = {hg, ..., hy,_,)> i8 called
a sliced homomorphisms of 2 onto B, if h;(A) = B for each ¢ << n and
<hiag)y - -y hi(“r(i,;‘)*l)>ER‘g‘ for {ay, ..., a/r(i,f)—1>€Rg'a (r(¢,j) denotes
the number of places of R:’g)

If h; is one-to-one and h™'= {hg', ..., hyl)) is also a sliced homomor-
phism of B onto 2, then h is called a sliced isomorphism of 2 onto B (*).

The terminology and notation in this section follows [6]. Let us denote
by Z; = (P, Vindn<o,jm & first order language, where P;; are interpreted
as Ry and v;, are running over A.

LeMMA 1.1 Let 2 and B be elementarily m-compact structures (*)
of power at most m*. A neccesary and sufficient condition for B to be a sliced
isomorphic image of 2 is that:

Th;(A) = Th;(B) for i=0,1,...,n—1,

(*) This notion is due to Jan Myecielski.
() We recall that for languages having at most m non-logical constants A
is elementarily m-compact (see [6]) if and only if it is m*-saturated (cf. [1] and [47).
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where Thy(X) denotes the complete theory of the structure X expressed in the
language 2;.

Proof. The necessity is obvious.

Let us consider the structures 2; = <4, Rj;>;_, and B; = (B, RYi_m
that are also elementarily m-compact of power at most m™. Since 2,
and B, are elementarily equivalent, thus, using a theorem of Morley
and Vaught [3], there is an isomorphism h&; of 2, onto B;. Thus h
= C{hgy+evy hy_y)> is the required sliced isomorphism.

Now, we can obtain the following theorem conjectured by Jan
Mycielski and proved by D.S. Scott:

TueorEM 1.2. Let & be a sentence. Then the following conditions are
equivalent :

(1) If O holds in a structure €, then @ holds in every sliced isomorph
of €.

(ii) & is logically equivalent to a conjunction of disjunctions of sentences
each of which is expressed in one of the languages %; (i = 0,1, ..., n—1).

Proof. It is easy to see that (ii) implies (i). Now we assume (i) and
for the moment, that 2™ = m™. Let € and © be structures such that
Th(C) ~ 2 < Th(D), where X is the set of all sentences described in
(ii), # is a sentence satisfying (i) and € |= ¢. By Theorem 1 of [5] there
are elementarily m-compact structures 2 and B, both of power m*,
which are elementary extensions of € and D, respectively. Thus 7h(2) ~
~ X c Th(B) and we have Th;(A) = Th;(B). By Lemma 1.1, B is an
image of 2 by a sliced isomorphism. Since 2 |= @, so, by (i), B |= ¢
and thus @ |= ¢. By Lemma 1.1 of [2], we conclude that #¢X and (ii)
follows.

To eliminate the Generalized Continuum Hypothesis from our ar-
gument we remark first that property (i) can be expressed in a purely
syntactical form. Now we can eliminate the assumption 2" — m* by
using arithmetization and the result of Gédel saying that any arithme-
tical statement about natural numbers which can be proved with the
aid of the Generalized Continuum Hypothesis (or even the Axiom of
Construectibility) can be proved without it.

LuvMA 1.3. Let A and B be elementarily m-compact structures of
power at most mT. A neccesary and sufficient condition for B to be a sliced
homomorphic image of 2 is that

Thi(A) ~ 1T < Thy(B) for i=0,1,...,n—1,

where 11 is the set of all sentences logically equivalent to positive seniences.

We omit the proof since it is quite similar to the proof of Lemma
1.1 if we use a theorem of Keisler (see [2], Theorem 3.1) on homomor-
phisms of elementarily m-compact structures.
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THEOREM 1.4. Let & be a sentence. Then the following conditions
are equivalent:

(1) It 9 holds in a structure €, then 9 holds in every sliced homomor-
phic image of €.

(ii) @ is logically equivalent to a conjunction of disjunctions of positive
sentences each o) which is expressed in one of the languages ¥; (i = 0,1, ...,
ce.yn—1), or F 9.

The proof of the above Theorem is analogous to the proof of The-
orem 1.2. |

LemmA 1.5. Let A and B be elemencarily m-compact structures of
power <t most m*. A necessary and sufficient condition for B to be isomor-
phic to an endomorphic image of 2 is that

Th) ~ 1T = Th(B) and  Th(A) ~ A = Th(B),

where 11 is the set of all positive sentences and A is the set of all universal
sentences.

Proof. The necessity is obvious.

To proof the sufficiency, let us observe that, because of Th(2A)~ .
= Th(B) and by Theorem 2.1 of [2], B is isomorphic to a substructure of 2.
Moreover, Th(2)~II = Th(B), thus by Theorem 3.1 of [2], B is a bom-
omorphic image of 2. So B is isomorphic to an endomorphic image of 2.

THeoREM 1.6. Let & be a sentence. Then the following conditions are
equivalent:

(i) If @ holds in a structure €, then & holds in every endomorphic
image of €.

(ii) 9 s logically equivalent to a conjunction of disjunctions of positive
sentences and universal sentences.

Now we will give a common generalization of the above Theorems.
By operations we mean functions whose arguments are arbitrary alge-
braic structures and whose values are some classes of algebraic structures
closed under isomorphisms and having the similarity type of the argument.
For example, we often use the operations #°, & and # which are defined
as follows:

A () consists of all homomorphic images of 2;

() consists of all structures isomorphic to substructures of 2(;

2 (2) consists of all structures isomorphic to direct powers of 2.

Let O be such an operation. Then 0* denotes a certain inverse of (',
defined by

')

BeO*(A) if and only if AeO(B).

Let 4(0) denote the set of all sentences # such that if # holds in 2,
then & holds in each LeO(2A).
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By these definitions we have immediately:

ProrosiTioN 1.7. (i) If @, e A(0), then Ay, pvypeA(0). If peA(0O)
and F ooy, then xeﬂ( O). If ¢ is a senlence such that ¢ or o,
then ped(0).

(ii) 4(0%) = {p: 719 4(0)}.

Write 2 <3 B if 2 is an elementary substructure ot B. An opera-
tion 0 is said to be perfect if and only if, for any structures 2l snd B, the
condition

Th(2) ~ A(0) < Th(B)

implies that there are structures %, & 2 and B, & B such that B, <0 (AU,).
Finally, an operation 0 is said to be summable if and only if for any
two directed systems (2.5 and <(B,;ds.5 (B being an ordinal > 0) such
that s 3 2, and B, < B,, for 4, < 6,<p and BV,e0(2,) for all
d << f, we have also
U B, e CO( UJ Q[,,) .
8<p a<p
Let <0,>,_, be a system of operations (« being an ordinal > 0). Let =
be a similarity type, and let <{z,>,_, be a system ot reducts of z(3). For
a structure 2, we denote by 2|, its r,-reduct. Now we define an opera-
tion O as follows:

BeO(A) if and only if B|r,c0,(AU|T,) for all y < a.

Such an operation ¢ will be called a composition of <0,y <q COITES-
ponding to the system <z,>,., of reducts.

THEOREM 1.8. Let v be a similarity type and {v,),., a system of its
reducts. Let <0,5,, be a system of perfect summable operations. Then the
composition O of 0,5, ., corresponding to the system {r,>,_, s also perfect,
and A(0) is the smallest set containing \_J) A(0,) and satisfying conditions
1.7 (1). P '

Proof. Let A be the smallest set containing | J 4(0,) and satisfying

y<a

the conditions described in Proposition 1.7 (i). 1t is visible that 4 < 4(0).
Thus, by Lemma 1.1. of [2], to prove our theorem it suffices to show that:

(%) if Th(A) ~ 4 = Th(B), then for some elementary extensions A*
and B* of A and B, respectively, we have B* e O (A*).

To prove the existence of such 2A* and B* we define by induction
two chains of structures 2 and B (y < a, n < w) having the following
properties:

() We recall that by a similarity type of a relational structure A = (A4, Ridies
we mean the pair v = (I, 7}, where r (i) is the number of places of R;(icI). By a re-
duct 7y of v we mean the type (I, r,>, where Iy < I and r, = r|I,, and <A, Bidier,
is the corresponding reduct of 2.
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10 for all n < w, if o<y <a, then AM < g[(n) and BP 3 23(11,)
20 AO = A and B = B; moreover, ‘2[(”“) U2AY and qg(n+1)
= JBY for n>0; y<a

r<a

30 %;n)['c},e@y(glg,n)|ry) for all n < o and v < a.
Let us put
=UJ UAP and B*=YJ U BN.
n<w y<a N<w y<a
It is visible that 2A* and B* satisfy (*) since both can be obtained
as follows:
*=UJUAM and B* =Y BN for all y < a.
n<w n<w
Thus we have B* ¢ 0(2A*) which finishes the proof.
In the situations described in Theorems 1.2 and 1.4, 7, are parti-
tions of v and @, are isomorphisms in 1.2 and homomorphisms in 1.4.
In the situation described in Theorem 1.6, we have ), =17, =7, 0, = &

2. Systems of operations on structures. Let (O0p;.; (I # 0) be
a system of operations and <2;>;.; a system of similar structures. Let
us denote by A4{0;;iel} the set of all sentences 19 such that if ¥ holds
in all 2; (iel), then 9 holds in every Be (M) O;(

iel
By the definition we immediately have
ProrosrTioN 2.1. (i). |J 4(8;) < 4{0;: iel}.

tel

(ii) If ¢,yped{0;: iel} and F ooy, then @Ay, yed{0;: iel}.
If ¢ is a sentence such that v ¢ or b ¢, then e A{0;: iel}.

Notice that 4{0;: iel} needs not be closed under disjunction as
we can show on the following example. Let I = {0, 1}, ¢, = #, 0, = #*,
M be a non-commutative semigroup without unity and 9N a non-com-
mutative semigroup with unity. Set 2, = M xN, B =N and A, be
an arbitrary commutative semigroup being a homomorphic image of 3.
Then Be# (AU,) and Be#*(AU,). Let us consider the following sentences :

o =V V,[oy =yx] and vy =", V,[0y=y].
1t is easy to see that ¢, weA{#, #*}, but ovypéA{#, #*}. Indeed,
U [=gvy, A l=¢vy but B|=-¢9aqy.

Now we will study the structure of the sets A{0;: 7¢I} for some
systems of @,;.

LemmA 2.2. Let A; be the set of all sentences ¥ such that for each 2,
and € with l’h(?[) A; < Th(C) if 2;|= 9, then also C|= 3 (for all

tel £ 0). Let A be the smallest set of sentences contaning | ) A; and safis-
el
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fying conditions described in 2.1 (ii). Then a neccesary and sufficient con-
dition for deA is that for each UA; and € such thal:

(1) 4~ N Th(gt,,) c Th(@)

and s&d

(2) U (A,; ~ Th(%(z)) c .Th(@),
tel

if Ujl= & for each iel, then also € |= 3.
Proot. The necessity is obvious. Let

I'={8: (1), (2) and A4;|= @ (iel) imply € |= & for all A; and C}.

Let us assume that 9eI'. We will prove that #e4. 1f 4 is inconsis-
tent, then #eA by 2.1 (ii). Thus we can assume that ¢ is consistent. Let

2 ={oed: F ¥ — a}.

The set X is non-void since all tautologies are in 2. Let € be an
arbitrary model of X and put

Q; = {p: 1ped; and € |= ¢} for all iel.

Since A; are closed under disjunctions, £; are closed under con-
junctions. Moreover, for each iel, the set 2; v {#} is consistent. Indeed,
if 2; o {9} were inconsistent, then there were a gpe2; such that + 4 —-¢.
But then we had —j¢ed; = A4 and thus ¢ €X. Since € is a model
of X, we have € |= - ¢ contrary to our assumption that ge£2;.

Let 2; be an arbitrery model of £; o {#}. Then we have 4 ~
~ M Th(A;) < Th(C). Indeed, if qped ~ () Th(2;), then there are sen-

el el
tences —jgred; (K =1,...,n) such that Fqpo (e a...A77¢.). We
have either €|=¢ or €|=-¢. We eliminate the tirst possibility.
Indeed, if € |=: ¢, then € |= ¢,v...v ¢,. Thus there exists a ke{l,...,n}
such that € |= ¢. But - ¢red;, and we have g;e; which means that
’.Zlik |= ¢r. On the other hand, we have 2; [=-¢, thus QL,-IC |= 1 ox;
a contradiction. Since we have shown that ¢ cannot hold in €, thus
€ |= ¢ and, consequently, 4 ~ (M Th(2;) = Th(C).
iel

Next, we prove that (J(4; ~ Th(2;)) = Th(€). Indeed, let ¢

iel

€ U(AimTh(*l[,-)). Then there is an index iel such that -jged; ~
tel

~ Th(;), thus ped; and 2; |=-¢. Either ¢ or - ¢ holds in €.
We eliminate the first possibility. Indeed, if € |= ¢, then ¢ef2;, but 2;
is a model of Q;, whence 2; |= ¢; a contradiction. Since ¢ cannot hold

in €, we have €|=-¢ and, consequently, (J(4;Th(2;)) < Th(€).
2 el

Now, since 2; and € satisfies (1) and (2), U; |= ¥ for all iel, and

del’, we have € |= #. This shows that & holds in an arbitrary model
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of 2. This means that there is a ce2’ such that F o — 4, thus F oo ¥
and JeA by the definition of the set 4, q.e.d.

Note that Lemma 2.2 is a multi-dimensional generalization of Lemma
1.1 in [2], and its proofs is similar.

THEOREM 2.3. If (0:>i.1 (I # 0) is a system of perfect summabie
operations, then A{0;: iel} 18 the smallest set of sentences satisfying 2.1
(i) and (ii).

Proof. Let 4 be the smallest set of sentences satisfying 2.1 (i) and
(ii). The inclusion A{0;: iel} = A follows from Proposition 2.1. Thus
we must show that A4{0;: iel} = A. Indeed, let ded{0;: iel} and let
for a given system <(2[;>;.; of structures and for a structure €, be 2; [= ¢
(for all 7¢1) and

A~ OTh() < Th(€)  and U (Th(R) ~ 4) = Th(C).
1el tel
The second inclusion gives Th(2;) ~ A(0;) < Th(C), thus using
perfectness and summability of ¢; (in the same manner as in the proof

of Theorem 1.8.) we obtain a system (2 >;.; of structures and a struec-
ture €* such that:

C e €, WA A, and C*e@;(A7) for all jel.

C* |= ¢ since Ped{0;: eI} and thus we have € [= 9. Hence, by
Lemma 2.2, de4, q.e.d.

From this theorem and well known theorems of Lyndon, Xos and
Tarski we immediately obtain the following corollaries characterizing
A{0;: iel} in some cases considered by C. Ryll-Nardzewski which, as
we have mentioned in the introduction, were proved by D. S. Scott.

COROLLARY 2.4. For every sentence § the following conditions are
equivalent :

(i) If A, |= 9 and U, |= &, and if theie are homomorphisms of 2,
onto B and B onto A,, then B |= 9.

(ii) 9 s logically equivalent to a conjunction of sentences which are
positive or negative (*).

COROLLARY 2.5. For every sentence & the following conditions are
equivalent:

i) If Uy |= 9, AUy |= 9 and AU, = B = U,, then B |= &.

(ii) @ is logically equivalent to a conjunction of ewistential or wuniversal

sentlences.

() A sentence ¢ is negative if and only if 7] ¢ is positive.
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