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0. INTRODUCTION

By a space we always mean a compact metric space, and by a map-
ping a continuous function. For any finite open covering U of a space X,
N (U) denotes the nerve of the covering U ([2], p. 234). For convenience
we shall denote the vertex in N (U) corresponding to the member « of U
by u itself. The distance p(x,y) between any two points #,y in N(U)
is the maximum of the absolute differences of their corresponding bary-
centric coordinates. That is

¢y Yy = Mmax p{u)—giu)|.

For any zeX, the simplex o¢(2) in N(U) corresponding to all the
members of U containing z is called the carrier of x. Any mapping a:
X — N(U) such that for e X, a(x)eInto(x) is called a barycentric map-
ping. Such a mapping exists ([1], p. 175). For any two coverings U and V
of X, we write U< V if U refines V.

Suppose a diagram

e K, * Kz"_ﬂl’>K1
Iy s F |4
=y I > s > L, 1>L1

of spaces and maps is given. Let K and L be the inverse limits ([2], p. 215)
of the inverse systems {K,, wu,} and {L,, Yms}, where for m >n, my,:
K,, - K, and yy,,: L, - L, are the composition maps =,0...0m,_; and
YnO...0y,_, respectively.

Suppose for any p = (p;, P2y ..., P, ...)eK and any n, }:im"a”kn[fk(pk)]
—>00
exists. Set

qn = Limyp, [ fx(px)], n=1,2,...,
k—00
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and define
f(p) = q = (q1yqay -y Gny---)-

geL. To show this we check that for m > n, v,.(¢n) = ¢,. Now by
definition

Im = Limypn [ fe(pr)].
k—»co
Since ., i8 a mapping,
Yo (@) = Pmn []Pim Viem L (Pk)]]
= {Jimwmn [@ren [fre (22) 1]
= Lim g [fx(Pr)] = Gn-
k—co

Thus f is a well defined function from K to L. We call f the limit
Junction of the mappings {f.}, and f: K — L the inverse limit of (I)'
(cf. [B]).

The main aim of this paper is to prove the following

THEOREM A. Let X, Y be spaces and g: X — Y be any mapping.
Then there exists a diagram

coe > N (D) —> o vo e N ) —Ls N ()
L r lf |4
( ) ~L n 2 N \L 1
vio.—=> N(Vy)—— ... —> N(V,)— N(V,)
where for each positive integer n, N(U,) and N(V,) are the nerves of finite
open coverings U,, V, respectively of X, Y, and f, is a simplicial mapping
such that
(a) the inverse limit f : P — Q of (1) ewxists, and
(b) the diagram

P—f—>Q
|a |ﬂ

. \
X—Y

commutes, where a and f are homeomorphisms.

We call f: P —@Q a realization as an inverse limit of ¢g: X —» Y.
Note that the continuity of f follows from (b) above. However, if X
and Y are homeomorphic and ¢ is any homeomorphism, the diagram
(I) can be so constructed that commutativity holds (Theorem 4).

Remark. In case the diagram (I)’ commutes f can furthermore
be shown to be continuous ([2], Theorem 3.13, p. 218). In fact, then
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the definition of the inverse limit as given here reduces to the usual de-
finition ([2], p. 234). For then, for &k > n,

Wien [ (Pr)] = fal7en(Pr)] = fu(Pa)

and the sequence {yu,[fr(pr)]} is just a constant sequence. In [5] to get
the continuity of f a certain “closeness” condition is used ([5], Theorem 2).

1. PRELIMINARIES

(1.1) Auxiliary covering. Let X be a space and a : X — K be a map-
ping into a polyhedron K. If K’ is a simplicial subdivision of K, then
the finite open covering {a~'[st(p)]: peK’ is a vertex of K'} of X, where
st(p) is the open star of p in K’, is called an auwiliary covering of X with
respect to a and K'.

(1.2) Carrier mapping. Let X, Y be spaces, and g : X — Y be any
mapping. Let U and V be finite open coverings of X and Y respectively.
Any mapping g¢': N(U) - N(V) such that for any weX, the carrier
of # in N(U) is mapped by it into the carrier of g(z) in N (V) is called
a carrier mapping with respect to g. Immediately from this definition
we have

LeMMma (1.1). The composition of any two carrier mappings is again
a caryier mapping. o

Let X be a space, U be a finite open covering of X, and a: X — N (U)
be a barycentric mapping. Let N (U)’ be any simplicial subdivision of
the nerve N (U) of U and U’ be the auxiliary covering of X with respect
to a« and N(U)'. The following is then easily established.

LEMMA (1.2). The correspondence o '{st(p;)] — pi for st(p:;) #9,
where p; is any vertex in N(U)', defines by linear extension a simplicial
isomorphism i: N(U') — N(U)'. Furthermore, i: N(U") — N(U) is a car-
rier mapping with respect to the identity mapping on X.

(1.3). In (1.2) above suppose that U< ¢g7'[V]= {g~'[v]:veV}.
For any vertex w in N(U) define a correspondence u — v, where v is
a vertex in N (V) such that g[u] = ». This correspondence takes the
vertices of a simplex in N (U) into the vertices of a simplex in N (V)
and, therefore, has a linear extension g': N(U) - N(V). The simplicial
mapping ¢’ is called the projection mapping induced by g. It is clearly
a carrier mapping.

. LEMMA (1.3). Let o, and o, be any two simplices with vertices g, ..., dyp
and by, ..., by respectively. Let f: o, — o, be any linear mapping. Then
for any two points ®,y in op,

02(f(2), f(y) < poi(x,y) diam [f(op)],
where o, and o, denote the metrics for o, and o, respectively (see §0).
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Proof. Suppose

q
f(ai)=2wikbk, 'i=0,...,p.
k=0

Then
o2(f(@), fay) = AR [ Wi — wix| < diam [f(oyp)].
If
D D
T = wa“z and y = ny,al
=0 i=0
then,
» D
Qz(f(w);f(y)) = m’?X'Z%wﬁk— Zyiwik g K=0,.,.58;
i=0 1=0

for some %k = 1.

P 4
=\ § wiwil—zyiwil
i=0 =0

» D
But, since }a; = }'y; = 1, for any fixed value j, 0 <j <k,
i=o

=0
p1 D
e:(f(#), f(y) = | 2 L (Wi — wyy) — Z Yi (wig— wy)
i =0
»
< max [wa—wa| Y |oi— yil
=
i)

< diam[f(op)]p 01(2, ¥).
This completes the proof.
The following corollary follows immediately from this lemmas:
COROLLARY (1.1). If M < o,, then

diam [f[ M]] < pdiam [ M]diam[f(o;)].

2. REALIZATION OF SPACES

(2.1) Auxiliary inverse system. Let U,, n =1,2,..., be finite
open coverings of X. The inverse system {N(U,), m,,} of the nerves
N(U,) and mappings m,,: N(Uy) — N(U,) for m > n is called an auz-
tliary inverse system associated with X if the following conditions are
satisfied:
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(a) Mesh U,, -0 as n — w.
(b) @yt N(Upyq) - N(U,) is for each »n a carrier mapping with
respect to the identity on X, and

nmn=ﬂm_1()--uoﬂn for m>n.

(¢) If o, denotes any simplex in N(U,), then, for a given & >0,
diam 7, (0,) < & for m large enough. {

(d) For any integer » and p,eN(U,), let V(p,) denote the inter-
section of all the members of U, corresponding to the vertices of the

smallest simplex containing 7,. If 7, (Pny1) = Pn, then V(pn.,) = V(pa).

(2.2). Suppose an auxiliary inverse system is given for a space X.
Let #eX and o,(z) denote the carrier of # in N(U,). From (2.1) (b) it
follows that {o, (%), @}, Where @, = 7, |04 (%), aNd Ay = Ty_,0...0 7y
for m > n, is an inverse system. If o(x) denotes the inverse limit of this,
and P that of the auxiliary inverse system, then P is compact and ¢(x)
is a compact and non-empty subset of P ([2], Theorem (3.6), p. 217).

LEMMA (2.1). If z, and ®, are any two distinct points of X, then
a(z,) No(x,) =9.

Proof. Since @, # x,, for sufficiently large integer n, no member
of U,, for n > n,, containing #, intersects any of its members containing
z, (see (2.1) (a)). Hence o, (z,) ~ 0,(2,) = @ for n > n,. This implies that
o(z,) ~ o(z,) =0O.

(2.3). For any pel, p = (p1, Day-..) a0A Wp(Ppyy) = Puy =1,2,...
From (2.1) (d), V(Pny1) = V(pa) for each n, also diam V(p,) -0 as
n — oo ((2.1), (a)). Hence

élV(pn) = fjjf—(ﬁ;) — {#) < X.

Define
a:P—->X
by setting for peP

a(p) =«  where ,D;V(p") == .

LEMMA (2.2). a s 1-1.

Proof. Suppose p = (Pys Pay -y Pny---) 30A ¢ = (15 -+ Gns --) AT
distinet points of P. Then there exists an integer n, such that for » = n,,
Pn # Qn- Let & = distance (py, gn,). From (2.1), (), there exists an
integer m, such that for n>m,, diam |, (o(pa))] <e, where o(pn)
is the smallest simplex in N (U,) containing p, . Hence g, ¢ 0(p,) for n = m,.
Again, for sufficiently large values of m, o(p,) and o(g,) are not faces
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of the same simplex in N(U,). For otherwise the simplex ¢ in N (U,)
eontaining p, and ¢, for some n > m, will satisfy diam [7nn, (0)] < €,
contradicting that the distance (Pnys @ny) = &. Thus for some integer n.
V(pa) ~ V(g,) = @. Hence

[e0] o0

Vipa) # M Vigw),

N=1 n=1]
and a(p) # a(q).
LEMMA (2.3). a s onto.

Proof. For any zeX, o(z) #0 (see (2.2)). From the definition
of a then for any peo(z), a(p) = =.

LEMMA (2.4). a is continuous.

Proof. Let M be a non-empty closed subset of X. Let @, denote
the subcomplex of N(U,) consisting of all the carriers on(®) in N(U,)
for weM, n =1,2,... If a, = m,|Q,, for » =1,2,..., then since Ty
are carrier mappings {Q,, mn,} is an inverse system, where for m > n,
Tonn = Tm_10...07,. Since @, is a compact and non-empty subset of
N(U,);, @ = InvLim{Q,, n,,} is a non-empty compact subset of P.
For weM, 0,(x) = Q,, hence ¢(#) = Q and | o(x) = Q.

xe M

Let #eX—M. Since M is closed and mesh of U, is < 1 /2", there
exists an integer n, such that for » > n,, no member of U, containing
intersects any of its members intersecting M. Hence for n > n,, o,(x) ~

Qn =@. This implies that o(z) ~Q =@, and @ = UJo(x). Hence
TeM

@=Uo@ =o' (@) =a'[M]

zeM weM
and a is continuous.
Lemmas (2.2)-(2.4) imply that « is a homeomorphism, and we have
THEOREM 1. The inverse limit of an auxiliary inverse sequence asso-
ciated with a space is homeomorphic to it. '

(2.4). Let U, and U, be finite open coverings of a space X. We say
that U, < U, if for any w,eU,, u, < u;el,, then @, c w,. It is not
difficult to see that every finite open covering of a space has such a re-
finement.

THEOREM 2. Any space has an auwmiliary inverse sequence associated
with .

Proof. Let X be a space, U, be a finite open covering of X of mesh
< %,and a; : X — N(U,) be a barycentric mapping. Let N ( U)" be a sim-
plical subdivision of ¥ (U) such that the mesh of N (U) is<1/2p, where p,
is the dimension of N(U,). Let U, be the auxiliary covering of X with
respect to a; and N(U,)" (see (1.1)), and 4,: N(U;) — N(U,;)" be the
inclusion mapping (Lemma (1.2)).
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Let U, be a finite open eovermg of X of mesh < 1/22 and such that
U,< U; (see (2.4)). Let m;: N(U,) - N(U;) be a projection mapping
with respect to the identity on X. Then

7= iyom: N(U,) = N(U,)

18 a carrier mapping.

Iterating this process we get an inverse system {N(U,), Tomn}, Where
for each positive integer n, U, 18 a finite open covering of X of mesh
<1/2"; Upy, < U, where U, is the auxiliary covering of X with respect
to a barycentric mapping a,: X — N(U,) and N(U,), a simplicial
subdivision of N (U,) of mesh < 1/2p,, p, being the dimension of N (U,).
Furthermore, z,: N(U,,,) - N(U,) is a carrier mapping, and is the
composition ino 7y Where @,: N(U,,,) — N(U,) is a projection mapping,
and i,: N(U,) - N(U,)’ 1s the inclusion mapping (Lemma (1.2)).

We claim that {N(Uyn), mms} is an auxiliary inverse sequence asso-
ciated with X. Con(htlons (a) and (b) of (2.1) are clearly satisfied. Con-
dition (d) is a consequence of (2.4). To show that condition (e) is also
satisfied, consider a simplex Onts in N(U,,,). By construction x, +1{Onsa)=0c

a simplex in N (U,,,)’ and is of diameter < 1 [2Ppy1. Let o,., be the
smallest simplex in N (U,,,) containing ¢. From corollary (1. 1),

diam 7, (0) < Py, diam (o) diam (7 (0nya)]

gpn-u'- dia'm[nn(o-'n«+l)]

n+41

1 1 1- 1

<= T
2 2p  2° p,
Hence
diam [z, ., ,(0)] < iz —1—
2" Pn
[terating this result we get, for m > n
diam [z, (0)] < 2,,,1_,, L

for any simplex gy, in N(U,). This implies condition (¢) and completes the
proof of the theorem.

Note. {N(U,), @tms} as constructed above has the property that
Bn : N(Up,,) - N(U,) is linear.

As a consequence of Theorems 1 and 2, we have

THEOREM 3. Any space can be realized as the inverse limit of am
auxtliary imverse sequence associated with it.
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Remark 1. Clearly, the inverse system can be adjusted, if nec-
essary, so that for each positive integer n, dimension of N (U,) < dimen-
sion of X ([1], Theorem 3.22, p. 188).

Remark 2. It may be noted that Theorem 3, in essence, is a well
known result of Freudenthal [3]. In fact, the inverse system constructed
in [3] (Satz 1, p. 229) has the additional property that the bounding
maps are onto. Extending this result of Freudenthal’s completely to
compact Hausdorff spaces, Mardesié ([4], Lemma 3, p. 282) has shown
that any mapping of a compact Hausdorff space into another can be
factored through an inverse limit of an inverse system of polyhedra
([4], Theorem 2, p. 285). However, use of the barycentric mapping to
construct an inverse system in Theorem 3, in our case, is basically dif-
ferent from that of Freudenthals. It is also the key to the proofs of The-
orems A and 4.

3. REALIZATION OF MAPPINGS

Proof of Theorem A. We construct inductively auxiliary inverse
systems {N(U,), Zmn} and {N(V,), ymn} associated with X and Y res-
pectively, with the added requirement that for each integer n

Un< g7 '[Val = {g7'[v]: veVa}.

Let f,: N(U,) - N(V,) be a projection mapping with respect to g
(see (1.3)). Then we have a diagram

e e W e ye 30 N ) — [T
|1, |4, |4,

¥ ¥ \
D N(V,) — oo ——> N (V) —5 N(V)

Let P = InvLim{N(Uy,), #ms}, @ = InvLim{N(V,), Ym.} and a:
P—>X, p: Q—Y be homeomorphisms as in Theorem 1. To check
that {f,} has a limit f, we must show that for any p = (py, ..., Pa, ...)eP,
Emwkn[fk(pk)] exists (n=1,2,...). Let a(p) =x; then from the

properties of a,

P = InvLim {g,(x), W;nn} = o ().

Hence p,eo,(x). Since f, is a carrier mapping with respect to g,
fu(pn)eon(y), where y =g(»), n =1,2,... Now for m >mn, Wmn(o'm(y))
c a,(y), since y’s are carrier mappings. Hence ot ik f(Dm))] = on(y).
Algo for any arbitrary e >0, there exists an integer m, such that for
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m = m, diam V’wnn[o'(fm(pm))]< ¢ (see (2.1), (c)). Hence {Wmn[fm(pm)]}y
m=mn+1, n+2,..., forms a Cauchy sequence lying wholly in on(Y),
and therefore has a limit point ¢, in o, (y) since o, (y) is compact. Thus
J: P —@ is a well defined function (see § 0). This proves Theorem A,
(a).

To prove (b), note above that for »n — 1,2,...,queo,(y). Hence
qeInvLim {o,(¥), Ymn}. Again, from the definition of the homeomor-
phism § (« of Theorem 1), 8(g) = y. Thus BLf(p)] =g [a(p)] and completes
the proof of (b).

THEOREM 4. Let X, Y be homeomorphic spaces and g: X - Y be
any homeomorphism. Then g: X — Y can be realized as an inverse limit
of a commutative diagram (I) (see Theorem A).

Proof. Let U, be a finite open covering of X such that U, and the
open covering V, = g[U,] = {g[u]: weU,} of ¥ are both of mesh < 3.
Let f,: N(U,) - DN(V,) be the projection mapping (see (1.3)) defined
by the linear extension of the correspondence u — glu] for weU. Since g
is an onto homeomorphism, f, is an onto isomorphism. From the defi-
nition of the metrics in the nerves (see §0) f, is actually an isometry.

Let f,: ¥ — N(V,) be a barycentric mapping. Define a;: X - N(U,)
by setting

(3.1) a; = filopog.

Since f; is an isomorphism, «, is well defined. It is easy to check
that o7 '[st(u)] = u for any #eU,, hence «, is a barycentric mapping.

If 7, is the dimension of N(U,), let N(U,) be a simplicial subdi-
vision of N (U,) such that its mesh is < 1 [27,. Since f, is an onto isomor-
phism, corresponding to N (U,)’, it induces a subdivision N (V) of N(V,),
which, since f, is an isometry, is also of mesh < 1/2r,. Furthermore,
from (3.1), we have,

(3.2) glar [s6(p)]] = B~ [st[f(»)]],
where p is any vertex in N (U,)’ and f(p) = q is a vertex in N (V,)’, and

the open stars are taken with respect to the corresponding subdivided
complexes. It also follows from (3.1) and (3.2) that

Vi=g[U] = {g[w]: v U}

where U} and V, are the auxiliary coverings of X and ¥ with respect
to a;, N(U,)" and 8,, N(V,)’" respectively. Then the projection mapping

fis N(Uy) - N (V)
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defined by the linear extension of the correspondence a '[st(p)] —
- st (f1(p))] is an onto isomorphism. Furthermore, the diagram

N(U) —L N(UY

commutes, where i, and j, are the inclusion mappings (see Lemma
(1.2)).

Let U, be a finite open covering of X such that U, and the finite
open covering V, = g[U,] = {g[«]: weU,} are both of mesh < 1/22,
and further that U,< U, (see (2.4)). Then also V,< V; from (3.2).
Let

m: N(U,) - N(Uy)

be any projection mapping with respect to the identity on X, and
define
w: N(Va) — N(V3)
by setting
?Pi =f£0:71’10f2_1,
where
fa: N(U;) = N(V)

is the isomdrphism defined as f, above. It is easy to see then from (3.2)
and the definition of f, that %; is a projection mapping with respect to
the identity on Y. Setting

p, =ji09, and @ = i,0m
the following diagram

N(U,) — N(U,)
|f2 lfl

} !
N(V,) =2 N(V,)

commutes. Iterating the above process we get a commutative diagram

By N(Up) —— ... —> N(U;) —> N(U,)
1

) Jt 2 . A"
s N(Vp) — o —> N (V) = N(V))

such that {N(Uy)y %tmn} and {N(V,), yms} form auxiliary inverse systems
associated with X and Y respectively (see proof of Theorem 2).



INVERSE LIMITS 307

It is not difficult to see, following the proof of Theorem A, that
the inverse limit of this diagram is a realization of g: X — Y.,

I wish to express my thanks to Prof. R. E. Chamberlin for sugges-
ting the problem, and to him and Prof. J. H. Case for helpful discus-
sions. The concept of auxiliary covering is due to Prof. Case.

REFERENCHES

[1] P. 8. Alexandrov, Combinatorial topology I, 1956,
[2] 8. Eilenberg and N. Steenrod, Foundations of algebraic topology, Prin-

coton 1952.
[3] H. Freudenthal, Entwicklungen von Rdumen und thren Gruppen, Com-

positio Mathematica 4 (1936-37), p. 145-234.
[4] 8. Marde&ié, On covering dimensions and inverse limits of compact spaces,

Illinois Journal of Mathematics 4 (1960), p. 278-291.

[6] J. Mioduszewski, Mappings of imverse limits, Colloquium Mathematicum
10 (1963), p. 39-44.
UNIVERSITY OF SASKATCHEWAN, SASKATOON

Regu par la Rédaction le 11. 11. 1965



