1967

DÉDIÉ À M. FRANCISZEK LEJA

SOME CRITERIA FOR THE MULTIVALENCE OF CERTAIN ANALYTIC FUNCTIONS

BY

MAXWELL O. READE (ANN ARBOR, MICH.) AND TOSHIO UMEZAWA (URAWA)

1. The following result is due to Umezawa [6]:

THEOREM (Umezawa). Let f(z) be analytic in the unit disc D: |z| < 1, and let $\Phi(z)$ be a p-valent convex analytic function in D. If $\text{Re}[f'(z)/\Phi'(z)] > 0$ holds in D, then f(z) is p-valent in D.

Umezawa calls f(z) in the preceding theorem a *p-valent close-to-convex function*. Such f(z) are generalizations of the univalent close-to-convex functions introduced by Kaplan [3].

The following result is due to Alexander [1]:

Theorem (Alexander). Let $f(z)=z+a_2z^2+\ldots$ be analytic in D and let $1\geqslant 2a_2\geqslant 3a_3\geqslant \ldots\geqslant 0$ hold. Then f(z) is univalent and close-to-convex in D.

The object of this note is to extend Alexander's result to the case of multivalently close-to-convex functions, and to extend certain results due to Ozaki [5]. We make use of Umezawa's result in the proofs of our theorems.

2. We can now prove the following result:

Theorem 1. If f(z) is analytic in D, and if there exists a p-valent starlike function $\sigma(z)$ such that

(1)
$$\operatorname{Re}\left[\frac{zf'(z)}{\sigma(z)}\right] > 0$$

holds in D, then f(z) is a p-valent close-to-convex function in D.

Proof. It follows from a result due to Goodman [2] that the function

$$\int_{0}^{z} \frac{\sigma(z)}{z} \, dz$$

is a p-valent convex function D. The present result now follows from Umezawa's theorem quoted above.

3. If we write $\sigma_1 \equiv z^p/(1-z)$, then a simple computation shows that

$$\operatorname{Re}\!\left[\frac{z\sigma_1'}{\sigma_1}\right] > \frac{1}{|1-z|^2}(1-|z|)\big(p-(p-1)|z|\big) > 0$$

holds in D. Hence σ_1 is a p-valent starlike function. For this particular function, Theorem 1 yields the following result.

Theorem 2. Let f(z) be defined by the power series

(2)
$$f(z) = z^{p} + a_{p+1}z^{p+1} + a_{p+2}z^{p+2} + \dots,$$

and let

(3)
$$p \geqslant \sum_{n=p}^{\infty} |na_n - (n+1)a_{n+1}|, \quad a_p = 1,$$

hold. Then f(z) is analytic in D and defines a p-valent close-to-convex function there.

Proof. First we have

$$egin{align} n\left|a_{n}
ight| &= \Big|\sum_{k=p}^{n-1} \left(ka_{k} - (k+1)\,a_{k+1}
ight) - p\,\Big|, \qquad a_{p} \equiv 1\,, \ &\leqslant \sum_{k=p}^{n-1} \left|ka_{k} - (k+1)\,a_{k+1}
ight| + p \ &\leqslant \sum_{k=p}^{\infty} \left|ka_{k} - (k+1)\,a_{k+1}
ight| + p \leqslant 2p\,. \end{split}$$

Hence the radius of convergence of the power series defining f(z) is not less than unity. Now if we use the function σ_1 of Section 3, then for z in D we have

$$\begin{split} \operatorname{Re}\left[zf'(z)/\sigma_1(z)\right] &= \operatorname{Re}\left[\frac{(1-z)f'(z)}{z^{p-1}}\right] \\ &= p - \operatorname{Re}\left[\sum_{n=p}^{\infty}\left(na_n - (n+1)a_{n+1}\right)z^{n-p+1}\right], \quad a_p \equiv 1, \\ &> p - \sum_{n=p}^{\infty}\left|na_n - (n+1)a_{n+1}\right| \geqslant 0. \end{split}$$

The present result now follows from Theorem 1.

COROLLARY. Let $f(z) = z^p + a_{p+1}z^{p+1} + \dots$ and suppose that either

$$(4) p \geqslant (p+1)a_{n+1} \geqslant (p+2)a_{n+2} \geqslant \ldots \geqslant na_n \geqslant \ldots \geqslant 0,$$

or

(5)
$$p \leqslant (p+1) a_{p+1} \leqslant (p+2) a_{p+2} \leqslant \ldots \leqslant n a_n \leqslant \ldots \leqslant 2p$$

holds. Then f(z) is a p-valent close-to-convex function in D.

4. If we use $\sigma_2 = z^p/(1-z)^2$ in Theorem 1, then we can prove the following result:

THEOREM 3. Let $f(z) = z^p + a_{p+1}z^{p+1} + \dots$ and let

(6)
$$p \geqslant \sum_{n=n}^{\infty} |(n-1)a_{n-1} - 2na_n + (n+1)a_{n+1}|, \quad a_{p-1} = 0, a_p = 1,$$

hold. Then f(z) is analytic and p-valent close-to-convex in D.

Corollary. Let $f(z) = z^p + a_{p+1}z^{p+1} + \dots$ and let either

$$p \geqslant (p+1)a_{p+1}-p \geqslant (p+2)a_{p+2}-(p+1)a_{p+1} \geqslant \ldots \geqslant 0$$

or

$$p \leqslant (p+1) a_{p+1} - p \leqslant (p+2) a_{p+2} - (p+1) a_{p+1} \leqslant \ldots \leqslant 2p$$

hold. Then f(z) is analytic and p-valent close-to-convex in D.

5. If we use $\sigma_3 = z^p/(1-z^2)$ in Theorem 1, then we can prove the following assertion:

THEOREM 4. Let $f(z) = z^{p} + a_{p+1}z^{p+1} + ...$ and let

$$p\geqslant \sum_{n=p}^{\infty}|(n-1)a_{n-1}-(n+1)a_{n+1}|, \quad a_{p-1}=0, a_p=1,$$

hold. Then f(z) is an analytic p-valent close-to-convex function in D.

6. It would be of interest to extend the results in a recent note due to Lewandowski, Reade and Złotkiewicz to the case of *p*-valent functions; these authors considered variants of Alexander's theorem, but confined themselves to the case of univalent close-to-convex functions.

REFERENCES

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics 17 (1915), p. 12-22.
- [2] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Transactions of the American Mathematical Society 68 (1950), p. 204-223.
- [3] W. Kaplan, Close-to-convex schlicht functions, Michigan Mathematical Journal 1 (1952), p. 169-185.

- [4] Z. Lewandowski, M. O. Reade and E. Złotkiewicz, On a certain condition for univalence, to appear.
- [5] S. Ozaki, On the theory of multivalent functions, Science Reports of Tokyo Bunrika Daigaku, Sect. A, No. 40 (1935), p. 168-188.
- [6] T. Umezawa, Multivalently close-to-convex functions, Proceedings of the American Mathematical Society 8 (1957), p. 869-874.

THE UNIVERSITY OF MICHIGAN SAITAMA UNIVERSITY (URAWA, JAPAN)

Reçu par la Rédaction le 10. 1. 1966