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1. The following result is due to Umezawa [6]:

THEOREM (Umezawa). Let f(z) be analytic in the unit disc D- i = 1,
and let D (2) be a p-valent convex analytic funetion in D. T fRe[f' (2)/® (2)] > 0
holds in D, then f(z) is p-valent in D.

Umezawa calls f(z) in the preceding theorem a p-valent close-to-
convexr function. Such f(z) are generalizations of the univalent close-
to-convex functions introduced by Kaplan [3].

The following result is due to Alexander [1]:

ThnroreM (Alexander). Let f(z) = 2+ay22-+ ... be analytic in D and
let 1 > 2a, > 3a; > ... = 0 hold. Then f(z) is univalent and close-to-conves
in D.

The object of this note is to extend Alexander’s result to the case
of multivalently close-to-convex functions, and to extend certain results
due to Ozaki [5]. We make use of Umezawa’s result in the proofs of our
theorems.

2. We can now prove the following result:

TuroreEM 1. If f(2) is analytic in D, and if there ewisis a p-valent
starlike function o(z) such that

(1) Re[zf’(z)]>0
a(?)

holds in D, then f(z) is a p-valent close-to-convex function in D.
Proof. It follows from a result due to Goodman [2] that the function

sz G iz) e

is a p-valent convex function D. The present result now follows from
Umezawa’s theorem quoted above.
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3. If we write ¢, = 2”/(1—=2), then a simple computation shows that

o [ =~ 1 0
o| 2> m - — -1l >

01

holds in D. Hence o, is a p-valent starlike function. For this particular
function, Theorem 1 yields the following result.

THEOREM 2. Let f(z) be defined by the power series

(2) f(2) = &P +ap 12" Fap 8" L,

and let

L2

(3) p = Y e —(nt1)a, |, a =1,

n

I
=

hold. Then f(z) is analytic in D and defines a p-valent close-to-convex function
there.
Proof. First we have

-

)@y = j N (kar— (k+1) ap) —p j, a, =1,
k=p
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Hence the radius of convergence of the power series defining f(z)
is not less than unity. Now if we use the function ¢, of Section 3, then
for z in D we have

Re[zf'(2)]o1(2)] = Re [1—_‘

(na'n_ (”‘l‘l)am—l) zn-p-;-l], ap =1,
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The present result now follows from Theorem 1.
COROLLARY. Let f(2) = & +a,,12" '+ ... and suppose that either

(4) p=(p+l)ay = (Pp+2)ap = ... 206, > ... 20,
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or
() PSP+, < (P+2)ap0 <o <na, <..o < 2p

holds. Then f(2) is a p-valent close-to-convex function in D.

4. If we use ¢, = 2"/(1—2)% in Theorem 1, then we can prove the
following result:

THEOREM 3. Let f(2) = P +a, 2"t '+ ... and let
b+

2

6)  p= Yln—1)a, ,—2na,+(n+a,,,|, ap,=0,a,=1,

T ==

]
=

hold. Then f(z) is analytic and p-valent close-to-convex in D.
COROLLARY. Let f(z) = 2% 4-a, 2"+ ... and let either

p=(p+l)ay,,—p = (p +2)ap 22— (p+1)ap, > ... =0
or

p<(pt+l)ay ,—p < (p+2)ap s—(p+1)ap,, <... < 2p

hold. Then f(2) is analytic and p-valent close-to-convexr in D.

5. If we use oy = 2"/(1—2°) in Theorem 1, then we can prove the

following assertion:
THEOREM 4. Let f(2) = " +ap, 3" '+ ... and let

De

p= Q=N — (4t an,], ap,=0,a,=1,

n
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k]

hold. Then f(z) is an analytic p-valent close-to-convex function in D.

6. It would be of interest to extend the results in a recent note due
to Lewandowski, Reade and Zlotkiewicz to the case of p-valent functions;
these authors considered variants of Alexander’s theorem, but confined
themselves to the case of univalent close-to-convex functions.
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