VOL. XIII

1965

FASC. 2

WEAK ISOMORPHISMS OF BOOLEAN AND POST ALGEBRAS

BY

T. TRACZYK (WARSAW)

1. Preliminaries. Let us consider algebras $(A_1; F_1)$, $(A_2; F_2)$ and sets $A_1^{(n)}$, $A_2^{(n)}$ of all n-ary algebraic operations in $(A_1; F_1)$ and $(A_2; F_2)$ respectively (for details see Marczewski [2]). A. Goetz and E. Marczewski have recently introduced the notion of weak isomorphism of $(A_1; F_1)$ onto $(A_2; F_2)$. It is — roughly speaking — a one-to-one mapping of A_1 onto A_2 which is a one-to-one mapping of $A_1^{(n)}$ onto $A_2^{(n)}$ for every n.

Precisely to say, a one-to-one mapping of A_1 onto A_2 is said to be a *weak isomorphism* if and only if for every $f \in A_1^{(n)}$ there exists $f^* \in A_2^{(n)}$ such that

$$f^*[\varphi(x_1),\ldots,\varphi(x_n)]=\varphi f(x_1,\ldots,x_n)$$

and $f_1 \neq f_2$ implies $f_1^* \neq f_2^*$.

A weak isomorphism of $(A_1; F_1)$ onto itself is said to be a weak automorphism.

A weak isomorphism is not necessarily an isomorphism. In the case of Boolean algebra $(B; \cup, \cap, -)$ a one-to-one mapping h of B onto B defined by the formula h(a) = -a $(a \in B)$ is a weak automorphism but not an automorphism.

In the sequel two weak automorphisms, just defined one and the identity, will be called *natural*.

Suppose $\mathfrak{V}_1 = (B_1; \cup, \cap, -)$ and $\mathfrak{V}_2 = (B_2; \cup, \cap, -)$ be two Boolean algebras and s an isomorphism of B_1 onto B_2 . If h is a natural weak automorphism on B_2 , then the superposition hs is a weak isomorphism. E. Marczewski raised the following problem: Is the superposition hs the only form of weak isomorphisms of Boolean algebras?

In section 2 this question will be answered in affirmative and in section 4 an analogical problem for Post algebras will be examined. A notion of natural weak automorphism on a Post algebra is introduced in section 3.

2. Weak isomorphisms of Boolean algebras. We now prove

THEOREM I. If there exists a weak isomorphism φ of a Boolean algebra $\mathfrak{B}_1 = (B_1; \cup, \cap, -)$ onto a Boolean algebra $\mathfrak{B}_2 = (B_2; \cup, \cap, -)$, then the algebras in question are isomorphic and $\varphi = hs$, where h is a natural weak automorphism on \mathfrak{B}_2 , and s is an isomorphism of \mathfrak{B}_1 onto \mathfrak{B}_2 .

Proof. Let us see first that φ maps trivial (1) algebraic operations onto trivial; it is an obvious consequence of the definition of the weak isomorphism.

Now, since φ maps $A_1^{(0)}$ onto $A_2^{(0)}$ (constants onto constants), only two possibilities are to be taken into consideration:

(1)
$$\varphi(0) = 0$$
 and $\varphi(1) = 1$,

(2)
$$\varphi(0) = 1$$
 and $\varphi(1) = 0$.

(Constants in both algebras are denoted by the same symbols in this paper.)

There is only one unary non-trivial and non-constant algebraic operation in B_1 (in B_2): the complementation f(x) = -x. Therefore

$$\varphi(-x) = -\varphi(x)$$

for every $x \in B_1$ and for every weak isomorphism φ .

Let us consider now the ease of algebraic operations of two variables which are neither unary nor trivial. There are only 6 of them:

$$x_1 \cup x_2, \quad x_1 \cup -x_2, \quad -x_1 \cup -x_2, \\ x_1 \cap x_2, \quad x_1 \cap -x_2, \quad -x_1 \cap -x_2.$$

One can easily verify that each of the formulas

$$\varphi(x_1 \cup x_2) = \varphi(x_1) \cup -\varphi(x_2), \quad \varphi(x_1 \cup x_2) = \varphi(x_1) \cap -\varphi(x_2),$$

$$\varphi(x_1 \cup x_2) = -\varphi(x_1) \cup -\varphi(x_2), \quad \varphi(x_1 \cup x_2) = -\varphi(x_1) \cap -\varphi(x_2)$$
contradicts (1) and (2).

Therefore the two following possibilities remain to be considered:

$$\varphi(x_1 \cup x_2) = \varphi(x_1) \cup \varphi(x_2)$$
 corresponding to (1), $\varphi(x_1 \cup x_2) = \varphi(x_1) \cap \varphi(x_2)$ corresponding to (2).

In the former we recognize an isomorphism (formula (3) should be remembered). In the latter the weak isomorphism φ is of the form $\varphi = hs$, where $s = h\varphi$ is an isomorphism and h is a natural weak automorphism but not an identity.

⁽¹⁾ $f \in B_1^{(n)}$ is said to be *trivial* if there exists $k \leq n$ such that $f(x_1, \ldots, x_n) = x_k$.

In fact:

$$h\varphi(x_1 \cup x_2) = h[\varphi(x_1) \cap \varphi(x_2)] = -\varphi(x_1) \cup -\varphi(x_2)$$
$$= h\varphi(x_1) \cup h\varphi(x_2).$$

On the other hand,

$$h\varphi(-x) = -\varphi(-x) = \varphi(x)$$
 and $h\varphi(x) = -\varphi(x)$,

so that

$$h\varphi(-x) = -h\varphi(x)$$
.

In consequence the one-to-one mapping $s = h\varphi$ is an isomorphism. This completes the proof of the theorem.

COROLLARY. If φ is a weak isomorphism of a Boolean algebra \mathfrak{B}_1 onto a Boolean algebra \mathfrak{B}_2 and $\varphi(0) = 0$, then φ is an isomorphism.

3. Natural weak automorphisms on Post algebras. Let

$$\mathfrak{P} = (P; \, \cup, \, \cap, \, e_0, \, e_1, \, \dots, \, e_{n-1}; \, C_0, \, C_1, \, \dots, \, C_{n-1})$$

be a Post algebra. This means that $(P; \cup, \cap)$ is a distributive lattice with a chain

$$0 = e_0 < e_1 < \ldots < e_{n-1} = 1$$

of constants $(n \ge 2)$, in which unary algebraic operations $C_0, C_1, \ldots, C_{n-1}$ are defined in such a way that

1° for every $x \in P$

(4)
$$x = \bigcup_{i=0}^{n-1} C_i(x) \cap e_i, \quad \bigcup_{i=0}^{n-1} C_i(x) = 1, \quad C_i(x) \cap C_j(x) = 0$$

for $i \neq j$ and

 2° if $x = \bigcup_{i=0}^{n-1} c_i \cap e_i$ for some $x \in P$, where $\bigcup_{i=0}^{n-1} c_i = 1$ and $c_i \cap c_j = 0$

for $i \neq j$, then $c_i = C_i(x)$ (see Traczyk [3], compare also Epstein [1]).

A representation like (4) is called a disjoint representation of x. Now let $\{i_j\}$, j = 0, 1, ..., n-1, be an arbitrary permutation of the set of integers 0, 1, ..., n-1.

Theorem II. The algebraic operation h defined on $\mathfrak P$ by the formula

$$(+) h(x) = C_{i_0}(x) \cap e_0 \cup \ldots \cup C_{i_{n-1}}(x) \cap e_{n-1}$$

is a weak automorphism.

Proof. The inequality $x_1 \neq x_2$ implies $C_{i_j}(x_1) \neq C_{i_j}(x_2)$ for some $i_j \neq 0$, by (4). Hence $h(x_1) \neq h(x_2)$ for $x_1 \neq x_2$.

On the other hand, let $\{k_j\}$, $j=0,1,\ldots,n-1$, be the inverse permutation of $\{i_j\}$, and let us put

$$(++)$$
 $y = \bigcup_{i=0}^{n-1} C_{k_i}(x) \cap e_i$ for arbitrary $x \in P$.

It is a disjoint representation of y. Hence $C_j(y) = C_{k_j}(x)$ and this implies

$$C_{i_j}(y) = C_{k_{i_j}}(x) = C_j(x).$$

Consequently,

$$x = \bigcup_{i=0}^{n-1} C_{i_j}(y) \cap e_j = h(y).$$

Thus we proved that h maps P onto P in a one-to-one manner. In particular, h maps $P^{(0)}$ onto $P^{(0)}$ in a one-to-one manner, because $h(e_{i_j}) = C_{i_j}(e_{i_j}) \cap e_j = e_j$ by (4).

For every $f \in P^{(n)}$ the superposition hf also belongs to $P^{(n)}$, and the formula

$$f^*(y_1, ..., y_n) = hf[h^{-1}(y_1), ..., h^{-1}(y_n)]$$

defines an algebraic operation $f^* \in P^{(n)}$, which corresponds to f. One can easily see that this correspondence is a one-to-one correspondence of $P^{(n)}$ onto itself.

Definition. For any permutation $\{i_j\}$, j = 0, 1, ..., n-1, the weak automorphism h defined by the formula (+) will be called *natural*.

COROLLARY. It follows from (++) that if h is a natural weak automorphism, then so is h^{-1} .

4. Weak isomorphisms of Post algebras. Now let us consider two Post algebras

$$\mathfrak{P}_1 = (P_1; \, \cup, \, \cap, \, e_0, \, e_1, \, \dots, \, e_{n-1}; \, C_0, \, C_1, \, \dots, \, C_{n-1}),$$

$$\mathfrak{P}_2 = (P_2; \, \cup, \, \cap, \, e_0, \, e_1, \, \dots, \, e_{n-1}; \, C_0, \, C_1, \, \dots, \, C_{n-1}).$$

For Post algebras the following theorem is a generalization of theorem I:

THEOREM III. If there exists a weak isomorphism φ of \mathfrak{P}_1 onto \mathfrak{P}_2 , then the algebras in question are isomorphic, and, moreover, there exists an isomorphism s of \mathfrak{P}_1 onto \mathfrak{P}_2 and a natural weak automorphism on \mathfrak{P}_2 such that $\varphi = hs$.

Proof. Let B_1 be the set of all elements x of P_1 of the following disjoint representation:

$$x = C_0(x) \cap e_0 \cup C_{n-1}(x) \cap e_{n-1} = C_{n-1}(x).$$

It is well known that $(B_1; \cup, \cap)$ is a Boolean algebra (of complemented elements of the lattice $(P_1; \cup, \cap)$. We are going to prove that $(\varphi(B_1); \cup, \cap)$ is a Boolean algebra, too.

If $y_1, y_2 \in \varphi(B_1)$, then there exists an algebraic operation $f_1 \in P_1^{(2)}$ $(f_2 \in P_1^{(2)})$ such that

$$y_1 \smile y_2 = \varphi f_1[\varphi^{-1}(y_1), \varphi^{-1}(y_2)] \qquad (y_1 \smallfrown y_2 = \varphi f_2[\varphi^{-1}(y_1), \varphi^{-1}(y_2)]).$$

It is known (see, e.g., Traczyk [4]) that

$$C_i(f_1[\varphi^{-1}(y_1), \varphi^{-1}(y_2)]) = (C_i(f_2[\varphi^{-1}(y_1), \varphi^{-1}(y_2)])), \quad i = 0, ..., n-1,$$
 is a join of a subset of the set

$$C = (C_j(\varphi^{-1}(y_1)) \cap C_k(\varphi^{-1}(y_2))), \quad j, k = 0, 1, ..., n-1.$$

Since $\varphi^{-1}(y_1) \in B_1$ and $\varphi^{-1}(y_2) \in B_1$, we have $C_j(\varphi^{-1}(y_1)) \cap C_k(\varphi^{-1}(y_2)) = 0$ if at least one of the indices j, k differs from 0 and n-1, and $C_{n-1}(\varphi^{-1}(y_i)) = \varphi^{-1}(y_i)$ for i = 1, 2. Let us put $C_0(\varphi^{-1}(y_i)) = -\varphi^{-1}(y_i)$, i = 1, 2.

Only four elements of the set C need to be taken into consideration (those do not equal 0):

$$\begin{aligned} -\varphi^{-1}(y_1) &\smallfrown -\varphi^{-1}(y_2), & -\varphi^{-1}(y_1) &\smallfrown \varphi^{-1}(y_2), \\ \varphi^{-1}(y_1) &\smallfrown -\varphi^{-1}(y_2), & \varphi^{-1}(y_1) &\smallfrown \varphi^{-1}(y_2). \end{aligned}$$

If $C_i(f_j[\varphi^{-1}(y_1), \varphi^{-1}(y_2)])$, j=1,2, were a join of some of them, $i=1,2,\ldots,n-2$, then — putting $y_k=\varphi(0)=e_{i_0}$ or $y_k=\varphi(1)=e_{i_{n-1}}$ (k=1,2) — we would obtain $e_i \in B_1$. Contradiction.

Hence we easily infer that f_j belongs to $B_1^{(2)}$, j=1,2, and therefore $y_1 \cup y_2 \in \varphi(B_1)$, $(y_1 \cap y_2 \in \varphi(B_1))$. Thus $(\varphi(B_1); \cup, \cap)$ is an algebra. Putting $y_k = e_{i_0}$ or $y_k = e_{i_{n-1}}$ (k=1,2) one can easily see that only two following cases are to be considered:

(*)
$$y_1 \cup y_2 = \varphi[\varphi^{-1}(y_1) \cup \varphi^{-1}(y_2)]$$
 and $y_1 \cap y_2 = \varphi[\varphi^{-1}(y_1) \cap \varphi^{-1}(y_2)]$ or

$$(**) \quad y_1 \cup y_2 = \varphi[\varphi^{-1}(y_1) \cap \varphi^{-1}(y_2)] \ \ \text{and} \quad y_1 \cap y_2 = \varphi[\varphi^{-1}(y_1) \cup \varphi^{-1}(y_2)].$$

From these formulas it follows that the fundamental operations \cup and \cap of the algebra $(\varphi(B_1); \cup, \cap)$ are commutative, associative and distributive.

In the case (*) for every $y \in \varphi(B_1)$

$$\begin{split} y & \circ e_{i_0} = \varphi \left[\varphi^{-1}(y) \circ e_0 \right] = \varphi \left[\varphi^{-1}(y) \right] = y\,, \\ y & \smallfrown e_{i_{n-1}} = \varphi \left[\varphi^{-1}(y) \smallfrown e_{n-1} \right] = \varphi \left[\varphi^{-1}(y) \right] = y\,, \\ y & \circ \varphi \left[-\varphi^{-1}(y) \right] = \varphi \left[\varphi^{-1}(y) \circ -\varphi^{-1}(y) \right] = \varphi (1) = e_{n-1}\,, \\ y & \smallfrown \varphi \left[-\varphi^{-1}(y) \right] = \varphi \left[\varphi^{-1}(y) \smallfrown -\varphi^{-1}(y) \right] = \varphi (0) = e_{i_0}\,. \end{split}$$

Thus $(\varphi(B_1); \cup, \cap)$ is a Boolean algebra, e_{i_0} is its zero-element, $e_{i_{n-1}}$ is its unit-element; $\varphi[-\varphi^{-1}(y)]$ is the complement of y.

In a similar way one can prove in the case (**) that $(\varphi(B_1); \cup, \cap)$ is a Boolean algebra, too.

Now let $\{i_j\}$, $j=0,1,\ldots,n-1$, be a permutation of integers $0,1,\ldots,n-1$ defined by the formula

$$\varphi(e_j) = e_{i_j}, \quad j = 0, 1, ..., n-1,$$

and let h be the natural weak automorphism on \mathfrak{P}_2 corresponding to this permutation, i. e.

 $h(x) = \bigcup_{j=0}^{n-1} C_{i_j}(x) \cap e_j.$

Hence

$$h\left(e_{i_{j}}
ight)=C_{i_{j}}\left(e_{i_{j}}
ight) \smallfrown e_{j}=e_{j} \quad ext{ and } \quad h arphi\left(e_{j}
ight)=e_{j}, \quad j=0,...,n-1$$
 .

By the above part of the proof, $(h\varphi(B_1); \cup, \cap)$ is a Boolean algebra, and $e_0 = 0$ and $e_{n-1} = 1$ are the zero-element and the unit-element, respectively, of this algebra.

Let $\mathfrak{V}_2 = (B_2; \cup, \cap)$ be the Boolean algebra of complemented elements of the lattice $(P_2; \cup, \cap)$. The Boolean algebra $(h\varphi(B_1); \cup, \cap)$ is a subalgebra of B_2 .

On the other hand, $(\varphi^{-1}h^{-1}(B_2); \smile, \smallfrown)$ is a subalgebra of the Boolean algebra $(B_1; \smile, \smallfrown)$. Consequently, $h\varphi(B_1) = B_2$.

Since $h\varphi$ is a weak isomorphism of a Boolean algebra onto a Boolean algebra and $h\varphi(0) = 0$, it follows, by the corollary of theorem I, that $h\varphi$ is an isomorphism.

Since $h\varphi$ is defined all over P_1 and, in addition,

$$h\varphi(e_i)=e_i, \quad i=0,\ldots,n-1,$$

 $s = h\varphi$ is an isomorphism (see Traczyk [3], p. 202) of the Post algebra \mathfrak{P}_1 onto the Post algebra \mathfrak{P}_2 . Hence $\varphi = h^{-1}s$, where h^{-1} is, by the corollary of theorem II, a natural weak automorphism on \mathfrak{P}_2 . The proof of theorem III is complete.

REFERENCES

- [1] G. Epstein, *The lattice theory of Post algebras*, Transactions of the American Mathematical Society 95 (1960), p. 300-317.
- [2] E. Marczewski, Independence and homomorphisms in abstract algebras, Fundamenta Mathematicae 50 (1961), p. 45-61.
- [3] T. Traczyk, Axioms and some properties of Post algebras, Colloquium Mathematicum 10 (1963), p. 193-209.
- [4] Some theorems on independence in Post algebras, Bulletin de l'Académie Polonaise des Sciences, Série des sciences math., astr. et phys., 10 (1962), p. 509-512.

Reçu par la Rédaction le 14. 11. 1964