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ON AN EXTREMAL PROBLEM IN GRAPH THEORY

BY

P. ERDOS (BUDAPEST)

In the present paper G(n;l) denotes a graph of n vertices and I
edges, K, — the complete graph of p vertices, i. e. G(p; (g)), K(pyy.e-

..., p,) — the complete r-chromatic graph with p; vertices of the i-th
colour in which every two vertices of different colour are adjacent.

Vertices of our graphs will be denoted by =, ¥, ..., edges by (x, ¥).
The valence v(x) of x is the number of edges adjacent to .

Denote by m(n; p) the smallest integer so that every G(Jn; m(n; p))
contains a K,. Turdn [6] (comp. also [7]) determined m(n; p) and also
showed that the only & (n; m(n; p)—1) which contains no K, is K (m,, ...
.eey Mp_y), Where

p-1 " .
Zmi =n and m; = [ ] ur [ﬁ~*] +1.
=il p—1 p—1

Dirac [1] and I (independently) proved that every @ (n;m(n;p))
contains a K,,, from which one edge is missing. In fact, the following
stronger result also holds:

There is a constant ¢, so that every @(n;m(n;p)) contains a K, ,
and c,n vertices each of which is joined to every vertex of our K, ,
([2], Lemma 2 (1)).

Denote by u(n; p) the smallest integer such that every G(n; u(n; p))
contains a K (p, p). The value of u(n; p) is not known and its determina-
tion seems to be a very difficult problem. As far as I know the first result
in this direction is due to E. Klein and myself [3]; we proved

(1) a,n*? < u(n; 2) < a;n®

(1) This lemma concerns only the case p = 3 but the same proof works in the
general case.
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Probably limu(n; 2)/n** = 1/2V/2, but it is not even known that

N—>00
this limit exists. The best result in this direction is due to Reiman [5]
who among others proved that

. g A N . 1
lim supw(n; 2)/n’* < =, lim infu(n; 2)/n*? =
N—>00 2 N—00 2]/2

Kovari, S6s and Turin [4] and independently I proved that for
a suitable constant g,

(2) w(ug p) < fnt U,

Probably w(n;p) > ,n* ", but this is known only for p — 2
(see [1]).

In this note we prove the following refinement of (2}

TueoreM 1. There is a constant y, such that every G(n; [ypn 1]
contains a K(p41,p 1) from which one edge is missing.

Remarks. Clearly the structure of a K (p+1,p+41) from which
one edge is missing is uniquely determined.

One could conjecture (by analogy to [1]) that every G(n; u(n; p))
contains a K(p+1,p+1) from which one edge is missing. This would
of course be a much stronger result than Theorem 1, but, if true, it will
be hard to prove since we do not know the value of u(n; p) and have
no idea of the structure of the extremal graphs Gnsu(n; »)—1) which
do not contain a K(p, p).

Instead of Theorem 1 we shall prove the following sharper

THEOREM 2. Let 1 > p be any integer. Then there is a constant Py
such that for n > ny(p,1) every G(n; [y, n* ")) contains a subgraph
H(p,1,1) of the following structure: the vertices of H(p,1,1) are xy, ..., x;
Yuy ooy Yo and its edges are all (x;,y;), where at least one of the indices i
or j is < p.

In other words, H(p,1,1) is K(I,1) from which the edges (x;, y;)
min (¢, j) > p, are missing.

First we prove two Lemmas.

’

LEMMA 1. Every G(n, m) contains a subgraph @' each vertex of which
has valence (in G') not less than [m/n].

If Lemma 1 would be false we could clearly order the vertices of
G (n; m) into a sequence x,, x,, ..., x, where for every i, 1 <i < n, ; is
joined to fewer than [m/n] vertices @iy ¢ < j < m. But this would imply
that the number of edges of @(n;m) is less than m. This contradiction
proves the Lemma,
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Consider now our G(n; [y,;n* ']). By Lemma 1 it has a subgraph
G (N ; m) each vertex of which has valence u = {y,;n'"'"]. Now we prove

LemMA 2. Let ¢,;> 0 be any constant. Then if vy, is sufficiently
large, our G(N;m) contains a K(p—1,s) with s = [¢,; n'"].

For each vertex y of G(N;m) consider all the (p—1)-tuples formed
from the vertices which are joined to y. Since by assumption y is joined
to at least w vertices, the number of these (p—1)-tuples counted for

each y separately is at least N (pﬁl). Now since N < n, we obtain by

a simple calculation that for sufficiently large y,;

{ u i [ N
(3) N(p_l)>cp,ln (p—l)'

Thus to some (p—1)-tuples correspond more than s = [¢,; n'"]
vertices ¥, i. e. (3) implies that there are p —1 vertices x;, ..., x,_; which
are all joined to the same s vertices ¥y, ..., y,. In other words, our graph
contains a K(p—1,s) and Lemma 2 is proved.

Now we are ready to prove Theorem 2. Denote by 2,,...,2x_»_s1
the remaining vertices of G(Nj;m), i.e. those vertices which are not
included in K(p—1,s). By our assumption the valence (in G(N;m))
of each y is at least w and clearly for y,; > 2¢,; and sufficiently large =,
$+p < u/2, hence each y is joined to more than w/2z’s. Hence there
are more than wus/2 edges joining the y’s with the 2’s. Denote now by
v'(2;) the number of y’s which are joined to #; (1 <j < N—p—s-+1).
Clearly

N—_p—s8+1

(4) 2 v’ (%) > jﬂ;—

j=1 -
and ()" denotes that the summation is extended only over the z; for
which o' (%) = p+1)

us £ 1
(B) X0 > o (PN —p 1) > S —n(pH) > vt

for sufficiently large c¢,; and y,;.

Form now for every z; satisfying v'(2;) > p-+1 all the p-tuples from
the y’s which are joined to z;. The number of these p-tuples, counted for
each z; separately, clearly equals

(v (27)
©) x (7).
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Using (5) we obtain from an elementary inequality that the sum (6)
is minimal if all the v'(z;) are as nearly equal as possible and if their
number is as large as possible (it is << x). Thus by a simple computation
we get

, (V' (%) ([i%,l?’:p,l] o $
(M) 2( ! )>n( g )>(l p+1)(p)

for sufficiently large y, ;. Formula (7) implies that the number of these
multiply counted p-tuples is larger than I—p-1 times the number of
all the p-tuples formed from the s distinguished y’s of K (p—1, s). Hence
there are I—p-1 2’8, say #;,...,2_p,,, satisfying

(8) V()= p+l, 1<i<l—p+1l
(only ©'(2,) = ! will be needed) and which are all joined to the same
P Y’s, say to ¥y, ..., ¥p. By (8) we can further assume that 2, is joined to

Ypt1s +-es Y1 Leb @y, ..., w, , be the distinguished p—1 #’s of K(p—
—1,s). Now the even graph spanned by a,...,x, ,,z2, cees F_pa}
Yis ooy Yps Ypi1y -5 ¥y 18 clearly an H(p,l,1), since, by Lemma 2,
@yy ...y Xy, are all joined to all the y’s, y,, ..., y, are joined to all the 2;
(1 <j <l—p-+1) by the argument following (7) and z, is joined to 2
(p+1 <j <) by construction. Thus the proof of Theorem 2 is com-
plete.
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