1965

FASC. 2

ON SET-THEORETICALLY INDEPENDENT COLLECTIONS OF BALLS

BY

J. ANUSIAK (WROCŁAW)

Recall that an atom of a collection of sets Z_1, \ldots, Z_k in a space X is understood to mean a set of the form $Z_1^{j_1} \cap \ldots \cap Z_k^{j_k}$, where $j_i = \pm 1$ $(i = 1, \ldots, k)$, $Z^1 = Z$, and $Z^{-1} = X \setminus Z$. There are at most 2^k atoms of a collection consisting of k sets, because each atom corresponds to a sequence j_1, \ldots, j_k . The collection of sets is said to be set-theoretically independent if all its atoms are non-void; then there are exactly 2^k atoms.

In this paper, prepared with kind help of Dr. A. Lelek, we shall give conditions for a finite collection of balls in the n-dimensional Euclidean space E^n to be set-theoretically independent. We also establish some relations between the set-theoretical independence of balls and the linear independence of their centres.

Unless the contrary is explicitly stated a ball will throughout be an open ball. Every ball is determined by a sphere — the boundary of this ball in the Euclidean space. Let us observe that with these definitions each non-void atom of a collection of balls has a non-void interior.

First we shall show some geometrical lemmas. The idea of the proofs of theorems (1) is contained in Lemma 6.

LEMMA 1. If H_1, \ldots, H_k (where $k \leq n$) are (n-1)-dimensional hyperplanes in the space E^n and the intersection $H_1 \cap \ldots \cap H_k$ is an (n-k)-dimensional hyperplane, then there exists an oblique coordinate system in E^n such that H_i has the equation $x_i = 0$ $(i = 1, \ldots, k)$. In this coordinate system for each component C of $E^n \setminus (H_1 \cup \ldots \cup H_k)$ there exists a sequence $\varepsilon_1, \ldots, \varepsilon_k$ of numbers $\varepsilon_i = \pm 1$ such that C is the set of all points $x \in E^n$ of the form $x = (x_1, \ldots, x_n)$, where $0 \neq x_i = \varepsilon_i |x_i|$ for $i = 1, \ldots, k$.

Proof. Let us choose vectors a_1, \ldots, a_n in E^n so that

$$1^{
m o}$$
 a_i is parallel to $\bigcap\limits_{\substack{j=1\j
eq i}}^k H_j$ $(i=1,...,k),$

⁽¹⁾ This concept, depending on the application of inversions, is due, among others, to A. Ramer and R. Ramer.

 2° a_i is not parallel to H_i (i = 1, ..., k),

 3° a_{k+1},\ldots,a_n are parallel to $H=H_1\cap\ldots\cap H_k$ and linearly independent.

Then the vectors a_1, \ldots, a_n are linearly independent. In fact, suppose on the contrary that

$$\beta_1 \boldsymbol{a}_1 + \ldots + \beta_k \boldsymbol{a}_k + \beta_{k+1} \boldsymbol{a}_{k+1} + \ldots + \beta_n \boldsymbol{a}_n = 0$$

and $\beta_1^2 + \ldots + \beta_n^2 > 0$. Thus by condition 3° there exists an index $i \leq k$ such that $\beta_i \neq 0$, i. e. the vector \boldsymbol{a}_i can be represented as a linear combination of the vectors $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_{i-1}, \boldsymbol{a}_{i+1}, \ldots, \boldsymbol{a}_n$ which are all parallel to H_i , in view of conditions 1° and 3°. This contradicts condition 2°.

Therefore we can construct an oblique coordinate system such that its axes x_i $(i=1,\ldots,n)$ are parallel to the vectors \boldsymbol{a}_i , respectively, and its origin o belongs to H. The point o exists, since $n-k\geqslant 0$ implies $H\neq\emptyset$. The equation $x_i=0$ determines H_i $(i=1,\ldots,k)$. Our construction immediately gives the conclusion concerning the components C. It is sufficient to see that each point of $E^n\setminus (H_1\cup\ldots\cup H_k)$ has the first k coordinates non-vanishing.

LEMMA 2. If H_1, \ldots, H_k , G (where $k \leq n$) are (n-1)-dimensional hyperplanes in the space E^n , the intersection $H_1 \cap \ldots \cap H_k$ is an (n-k)-dimensional hyperplane contained in G, and P_1, P_2 are open half-spaces, on which G cuts E^n , then the set $E^n \setminus (H_1 \cup \ldots \cup H_k)$ has a component contained in P_1 , and a component contained in P_2 .

Proof. Let, in the oblique coordinate system from Lemma 1, the hyperplane G have the equation

$$a_1x_1 + \ldots + a_kx_k + a_{k+1}x_{k+1} + \ldots + a_nx_n = 0.$$

Since $H = H_1 \cap ... \cap H_k \subset G$ and the equations

$$x_1 = x_2 = \ldots = x_k = 0$$

determine H, it follows that

$$a_1x_1 + \ldots + a_kx_k = 0,$$

is also an equation for G, and that $a_1^2 + \ldots + a_k^2 > 0$. We can admit the half-spaces P_1 and P_2 to be given by the inequalities

$$a_1x_1+\ldots+a_kx_k<0$$
 and $a_1x_1+\ldots+a_kx_k>0$,

respectively. Putting

$$arepsilon_{ij} = egin{cases} (-1)^j \mathrm{sign}\, a_i, & \mathrm{if} & a_i
eq 0, \ +1, & \mathrm{if} & a_i = 0, \end{cases}$$

for $i=1,\ldots,k$, and j=1,2, we determine the required components by the formula $C_j=\{(x_1,\ldots,x_n)\colon 0\neq x_i=\varepsilon_{ij}|x_i|\ \text{for}\ i=1,\ldots,k\}$, according to Lemma 1. Obviously, $C_1\subset P_1$ and $C_2\subset P_2$.

LEMMA 3. Let H_1, \ldots, H_k (where $k \leq n$) be (n-1)-dimensional hyperplanes in the space E^n such that the intersection $H = H_1 \cap \ldots \cap H_k$ is an (n-k)-dimensional hyperplane. If K is an (n-1)-dimensional hyperplane or a ball in E^n , and $H \cap K = \emptyset$, then the set $E^n \setminus (H_1 \cup \ldots \cup H_k)$ has a component disjoint with the closure \overline{K} of K.

Proof. If K is a ball, let us construct the half-line L going out from the centre of K and perpendicular to H or - for $H=\{p\}$ being one-point set - passing through p. In the point of intersection of L with the sphere of the ball K let us construct the (n-1)-dimensional hyperplane G' perpendicular to L. If K is an (n-1)-dimensional hyperplane, let us set G'=K. Let G be the (n-1)-dimensional hyperplane parallel to G' and containing H. Obviously, G satisfies the conditions of Lemma 2. Since either $\overline{K} \cap P_1 = \emptyset$ or $\overline{K} \cap P_2 = \emptyset$, there exists by Lemma 1 a component of $E^n \setminus (H_1 \cup \ldots \cup H_k)$ that is disjoint with \overline{K} .

LEMMA 4. The union $H_1 \cup \ldots \cup H_k$ of (n-1)-dimensional hyperplanes H_1, \ldots, H_k (where $k \leq n$) cuts the space E^n on 2^k components if and only if the intersection $H_1 \cap \ldots \cap H_k$ is an (n-k)-dimensional hyperplane.

Proof. We have to prove that the condition formulated in Lemma 4 is (a) sufficient, and (b) necessary.

- (a) Let us consider the coordinate system from Lemma 1. Different components of $E^n \setminus (H_1 \cup ... \cup H_k)$ correspond to different sequences $\varepsilon_1, ..., \varepsilon_k$ of the numbers $\varepsilon_i = \pm 1$. There are 2^k those sequences.
- (b) The necessity of the condition will be proved by induction. For one hyperplane it is obvious. Let us suppose that it holds for k-1 hyperplanes and consider (n-1)-dimensional hyperplanes H_1, \ldots, H_k such that the union $H_1 \cup \ldots \cup H_k$ cuts E^n on 2^k components. Then the union $H_1 \cup \ldots \cup H_{k-1}$ cuts E^n on 2^{k-1} components, because all components of $E^n \setminus (H_1 \cup \ldots \cup H_{k-1})$ are convex, and thus adding H_k to the first k-1 hyperplanes the number of components can at most be doubled. By the induction hypothesis, the intersection $H' = H_1 \cap \ldots \cap H_{k-1}$ is an (n-k+1)-dimensional hyperplane. Since H_k is an (n-1)-dimensional hyperplane, the intersection

$$H_1 \cap \ldots \cap H_k = H' \cap H_k$$

can be 1° the void set, 2° the hyperplane H', or 3° an (n-k)-dimensional hyperplane. In the cases 1° and 2° H_k cannot intersect all components of $E^n \setminus (H_1 \cup \ldots \cup H_{k-1})$ according to Lemmas 3 and 2, respectively,

hence $H_1 \cup ... \cup H_k$ cannot cut E^n on 2^k components. So only the case 3^o is possible, which completes the proof.

LEMMA 5. If the intersection $H_1 \cap \ldots \cap H_n$ of (n-1)-dimensional hyperplanes is a one-point set $\{p\}$, then p is an accumulation point of each component of the set $E^n \setminus (H_1 \cup \ldots \cup H_n)$.

Proof. Take the oblique coordinate system given in Lemma 1. Obviously, p is its origin. Lemma 1 immediately implies that each component of $E^n \setminus (H_1 \cup \ldots \cup H_k)$ intersects every ball with centre at the point p.

LEMMA 6. Let Q_1, \ldots, Q_k be balls in the space E^n and let $\iota \colon M^n \to M^n$ be an inversion of the Möbius space $M^n \supset E^n$ with centre at a point $s \in S_1 \cap \ldots \cap S_k$, where S_i is the sphere of the ball Q_i $(i = 1, \ldots, k)$. Denote by H_i the (n-1)-dimensional hyperplane $\iota(S_i \setminus \{s\})$. If B is a component of the set $E^n \setminus (H_1 \cup \ldots \cup H_k)$, then there exists an atom A of the collection of balls Q_1, \ldots, Q_k in E^n such that

$$\iota(B \setminus \{s\}) = \operatorname{Int} A \subset A \subset \overline{\iota(B \setminus \{s\})} \cup \{s\},$$

where Int Z and \overline{Z} denote the interior and the closure of the set Z in E^n , respectively. Taking the atom A for the component B one determines a 1-1 correspondence between the components of the set $E^n \setminus (H_1 \cup \ldots \cup H_k)$ and the non-void atoms of the collection Q_1, \ldots, Q_k .

Proof. The open half-spaces, on which H_i cuts E^n , are the sets $\iota(Q_i)$ and $\iota(E^n \setminus \overline{Q}_i) \cup \{s\}$. Since

$$Q_i = \operatorname{Int} Q_i^1$$
 and $E^n \setminus \overline{Q}_i = \operatorname{Int} Q_i^{-1}$,

there exist numbers $j_i=\pm 1$ $(i=1,\ldots,k)$ such that

(i)
$$B \setminus \{s\} = \bigcap_{i=1}^k \iota(\operatorname{Int} Q_i^{j_i}) = \iota(\operatorname{Int} \bigcap_{i=1}^k Q_i^{j_i}),$$

where the last equality is a consequence of the fact that the inversion ι is 1-1. Moreover, the closed half-spaces containing the component B are the closures of the sets $\iota(\operatorname{Int}Q_i^{j_i})$ in E^n $(i=1,\ldots,k)$, and the intersection of these closed half-spaces is equal to \overline{B} . Observe that every set $\iota(Q_i^{j_i}\setminus\{s\})$ is an open half-space or a closed half-space without the point s.

Hence we obtain

$$\bigcap_{i=1}^k \iota(Q_i^{j_i} \setminus \{s\}) \subset \overline{B}.$$

Let $A = Q_i^{j_i} \cap \ldots \cap Q_k^{j_i}$. According to (i), the set $\iota(B \setminus \{s\})$ is the interior of A in E^n . Since the inversion ι transforms $E^n \setminus \{s\}$ homeomorphically onto itself and the closure of a subset $Z \subset E^n \setminus \{s\}$ in the space $E^n \setminus \{s\}$ is equal to $\bar{Z} \setminus \{s\}$, we have

$$\iota(\overline{A \setminus \{s\}} \setminus \{s\}) = \overline{\iota(\overline{A \setminus \{s\}}) \setminus \{s\}} = \overline{\iota(\bigcap_{i=1}^k Q_i^{j_i} \setminus \{s\}) \setminus \{s\}} = \overline{\bigcap_{i=1}^k \iota(Q_i^{j_i} \setminus \{s\}) \setminus \{s\}} \subset \overline{B} \setminus \{s\} = \overline{B \setminus \{s\}} \setminus \{s\},$$

by virtue of (ii). It follows that

$$A \subset (A \setminus \{s\}) \cup \{s\} \subset (\overline{A \setminus \{s\}} \setminus \{s\}) \cup \{s\}$$
$$\subset \iota(\overline{B \setminus \{s\}} \setminus \{s\}) \cup \{s\} = \overline{\iota(B \setminus \{s\})} \cup \{s\}.$$

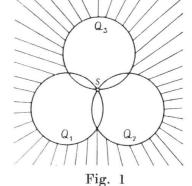
In this way we have proved the first conclusion of Lemma 6, containing inclusions. It implies the second conclusion. Indeed, the function under which the atom A corresponds to the component B must be 1-1, for the inversion ι is so. Each non-void atom of the collection Q_1, \ldots, Q_k corresponds to some component B, because this atom has a non-void interior disjoint with $S_1 \cup \ldots \cup S_k$, and the inversion ι is a homeomorphism of the Möbius space M^n onto itself, sending $H_1 \cup \ldots \cup H_k$ into $S_1 \cup \ldots \cup S_k$.

Remark. The point s can be an isolated point of an atom A. It is so e.g. for the atom

$$A = Q_1^{-1} \cap Q_2^{-1} \cap Q_3^{-1}$$

of the collection of three circles Q_1, Q_2, Q_3 on the plane E^2 , whose boundaries intersect at a single point s (fig. 1). Thus the symbol $\{s\}$ written down at the end of inclusions in Lemma 6 cannot be removed from this formula.

LEMMA 7. If a collection of balls Q_1, \ldots, Q_k (where $k \leq n$) in the space E^n is set-theoretically independent and all its atoms are connected, then



for every (n-1)-dimensional hyperplane H passing through the centres of the balls Q_1, \ldots, Q_k the collection $H \cap Q_1, \ldots, H \cap Q_k$ is a set-theoretically independent collection of balls in the subspace H.

Proof. All the atoms A_i $(i=1,\ldots,2^k)$ of the collection Q_1,\ldots,Q_k are non-void, thus there exist points $p_i \, \epsilon A_i$ $(i=1,\ldots,2^k)$. If $p_i \, \epsilon H$, then, by symmetry of the collection with respect to H, also the point p_i' , symmetric to p_i with respect to H, belongs to A_i . By the connectedness of atoms, there exists an arc joining p_i with p_i' , and completely contained in A_i . Obviously, this arc intersects H. Consequently, the atoms $H \cap A_i$ $(i=1,\ldots,2^k)$ are non-void.

THEOREM 1. A collection of balls Q_1, \ldots, Q_k (where $k \leq n$) in the space E^n is set-theoretically independent if and only if the intersection of spheres of the balls Q_1, \ldots, Q_k is an (n-k)-dimensional sphere.

Proof. Denote by S_i the sphere of the ball Q_i (i = 1, ..., k).

- (a) Let us suppose that the intersection $S = S_1 \cap \ldots \cap S_k$ is an (n-k)-dimensional sphere. The set S obviously contains at least two points, because $n-k \geq 0$. Let $\iota \colon M^n \to M^n$ be an inversion with centre at $s \in S$. The intersection $H_1 \cap \ldots \cap H_k$ of the hyperplanes $H_i = \iota(S_i \setminus \{s\})$ is an (n-k)-dimensional hyperplane, thus according to Lemma 4 there are 2^k components of $E^n \setminus (H_1 \cup \ldots \cup H_k)$. Consequently, by Lemma 6, there are 2^k non-void atoms of the collection Q_1, \ldots, Q_k , i. e., this collection is set-theoretically independent.
- (b) The converse implication will be proved by induction. For k=1 it trivially holds. Assume that it holds for k-1 and that a collection of balls Q_1, \ldots, Q_k (where k>1) is set-theoretically independent. Then the collection Q_1, \ldots, Q_{k-1} is set-theoretically independent too. Hence the intersection $S'=S_1 \cap \ldots \cap S_{k-1}$ is an (n-k+1)-dimensional sphere. Let us suppose that the intersection

$$S_1 \cap \cdots \cap S_k = S' \cap S_k$$

is not an (n-k)-dimensional sphere. The sphere S_k being (n-1)-dimensional, our supposition is possible only in the following two cases:

(i)
$$S' \subset S_k$$
, (ii) $S' \cap S_k \subset \{s'\}$.

We shall eliminate both these possibilities. In the case (i) we have $S' = S_1 \cap ... \cap S_k$. Let us apply, just as in the part (a) of this proof, an inversion with centre at $s \in S'$. We obtain k (n-1)-dimensional hyperplanes, whose intersection is an (n-k+1)-dimensional hyperplane. Thus, according to Lemma 4, they cannot cut E^n into 2^k pieces. Hence, by Lemma 6, there are less than 2^k non-void atoms of the collection Q_1, \ldots, Q_k , and terefore this collection is not set-theoretically independent, contrary to the assumption. In the case (ii) the inequality $k \leq n$ implies that there exists a point s such that $s \in S'$ and $s \neq s'$. An inversion ι : $M^{n} \rightarrow M^{n}$ with the centre at s maps the spheres S_{1}, \ldots, S_{k-1} without the point s onto some (n-1)-dimensional hyperplanes H_1, \ldots, H_{k-1} , respectively. Let K denote the ball bounded by the sphere $\iota(S_k)$ in E^n . Since $k \leqslant n$, the intersection $H = H_1 \cap ... \cap H_{k-1}$ is at least a line. But (ii) implies $H \cap \iota(S_k) \subset {\{\iota(s')\}}$, and it follows that H lies outside K. In view of Lemma 3, the closed ball \overline{K} does not intersect all the components of $E^n \setminus (H_1 \cup \ldots \cup H_{k-1})$. However, $\iota(\overline{K})$ contains Q_k or its complement. This shows, by Lemma 6, that the interior of an atom of the collection Q_1, \ldots, Q_k is void, contrary to the assumption. The proof of Theorem 1 is complete.

Applying the above theorem to k = n we see that the intersection of spheres in every set-theoretically independent collection of n balls in the space E^n is a two-point set.

THEOREM 2. Let the collection of balls Q_1, \ldots, Q_n in the space E^n be set-theoretically independent and let the two-point set $\{s, s'\}$ be the intersection of spheres of the balls Q_1, \ldots, Q_n . Let Q_{n+1} be a ball. The collection Q_1, \ldots, Q_{n+1} is set-theoretically independent if and only if the ball Q_{n+1} contains one of the points s and s', and its closure \overline{Q}_{n+1} does not contain the remaining one.

Proof. Denote by S_i the sphere of the ball Q_i (i = 1, ..., n+1).

- (a) We can assume that $s \notin \overline{Q}_{n+1}$ and $s' \in Q_{n+1}$. After an inversion ι : $M^n \to M^n$ with the centre at s we get the (n-1)-dimensional hyperplanes $H_i = \iota(S_i \setminus \{s\})$ which intersect at a single point $p = \iota(s')$ and the ball $\iota(Q_{n+1})$ which contains p. By Lemma 5, this ball contains points from all the components of $E^n \setminus (H_1 \cup \ldots \cup H_n)$. Obviously, all those components, being unbounded by Lemma 1, have common points also with the complement of Q_{n+1} . Thus, by Lemma 6, the collection of balls Q_1, \ldots, Q_{n+1} is set-theoretically independent.
- (b) We shall prove that the collection Q_1, \ldots, Q_{n+1} is not set-theoretically independent in each of the following four cases:

(i)
$$s \notin \overline{Q}_{n+1}, s' \notin \overline{Q}_{n+1},$$
 (ii) $s \in S_{n+1}, s' \notin S_{n+1},$

(iii)
$$s \in S_{n+1}, s' \in S_{n+1},$$
 (iv) $s \in Q_{n+1}, s' \in Q_{n+1}.$

In the cases (i), (ii), and (iii), we do the same as in the part (a) above. Consequently, in the case (i) we get the ball $\iota(Q_{n+1})$, disjoint with $H_1 \cap$ $\ldots \cap H_n = \{p\}$. By Lemma 3, this ball does not meet all the components of $E^n \setminus (H_1 \cup \ldots \cup H_n)$. It follows from Lemma 6 that Q_{n+1} does not meet the interior of an atom of the collection Q_1, \ldots, Q_n . In the case (ii) we get the (n-1)-dimensional hyperplane $H_{n+1} = \iota(S_{n+1} \setminus \{s\})$, which does not pass through p. By Lemma 3, the hyperplane H_{n+1} does not meet any component B of $E^n \setminus (H_1 \cup \ldots \cup H_n)$. Therefore the closure \overline{P} of one of the half-spaces on which H_{n+1} cuts E^n does not meet B. However, the set $\iota(P)$ contains Q_{n+1} or its complement. It thus follows from Lemma 6 that Q_{n+1} or its complement does not meet the interior of an atom of the collection Q_1, \ldots, Q_n . In the case (iii) we get the hyperplane H_{n+1} passing through p. In view of Lemma 2, both half-spaces on which H_{n+1} cuts E^n contain the whole of some components of $E^n \setminus (H_1 \cup \dots$... $\cup H_n$). Since one of these half-spaces is the set $\iota(Q_{n+1})$ and $s \in S_{n+1} \subset$ $\subset Q_{n+1}$, it follows from Lemma 6 that the closure \overline{Q}_{n+1} contains an atom of the collection Q_1, \ldots, Q_n . The case (iv) reduces to the case (iii),

for we can find a ball contained in Q_{n+1} and such that both points s and s' lie on its sphere.

THEOREM 3. If a collection of balls Q_1, \ldots, Q_k (where $k \leq n+1$) in the space E^n is set-theoretically independent, then the intersection of spheres of the balls Q_1, \ldots, Q_k is the set of all points $x \in E^n$ such that x is an accumulation point of each atom of the collection Q_1, \ldots, Q_k .

Proof. Let $x \in S = S_1 \cap \ldots \cap S_k$, where S_i is the sphere of the ball Q_i $(i = 1, \ldots, k)$. Therefore $S \neq \emptyset$ and Theorem 2 implies $k \leq n$. Take a ball Q_{k+1} with centre x and with a radius sufficiently small, so that the sphere of Q_{k+1} cuts E^n between some points of S. According to Theorems 1 and 2, the collection Q_1, \ldots, Q_{k+1} is set-theoretically independent, and thus Q_{k+1} has points from all the atoms of the collection Q_1, \ldots, Q_k .

Conversely, if $y \notin S$, then $y \notin S_i$ for some i = 1, ..., k. Therefore a ball with centre y and with a radius sufficiently small either does not intersect Q_i or its complement.

THEOREM 4. Every set-theoretically independent collection of balls in the space E^n can be extended to a maximal set-theoretically independent collection, which consists of n+1 balls.

Proof. It is known (2) that every set-theoretically independent collection of balls in the space E^n consists at most of n+1 balls. Let a collection of balls Q_1, \ldots, Q_k (where $k \leq n$) be set-theoretically independent in E^n . By Theorem 1, the intersection of spheres of the balls Q_1, \ldots, Q_k is an (n-k)-dimensional sphere, thus it contains at least two points. Construct a ball Q_{k+1} with centre at one of them and such that its closure \overline{Q}_{n+1} does not contain the remaining one. According to Theorem 3, the collection Q_1, \ldots, Q_{k+1} is set-theoretically independent.

THEOREM 5. All atoms of a set-theoretically independent collection of balls in the space E^n (where n > 1) are connected (3).

Proof. Let Q_1, \ldots, Q_k be a set-theoretically independent collection of balls in E^n . Then, as we know (2), we must have $k \leq n+1$. Denote by S_i the sphere of the ball Q_i $(i=1,\ldots,k)$.

If $k \leq n$, then by Theorem 1 the intersection $S = S_1 \cap ... \cap S_k$ is an (n-k)-dimensional sphere. Let $\iota : M^n \to M^n$ be an inversion with

⁽²⁾ A. Rényi, C. Rényi et J. Surányi, Sur l'indépendance des domaines simples dans l'espace euclidien à n dimensions, Colloquium Mathematicum 2 (1951), p. 130-135.

⁽³⁾ A. Lelek has generalized Theorem 5 to the following form:

If an atom of a finite collection of open or closed balls in the space E^n (where n > 1) is non-void, then the opposite atom of the collection is connected.

Here by the *opposite* atom to an atom corresponding to a sequence $j_1, ..., j_k$ one means the atom corresponding to the sequence $-j_1, ..., -j_k$.

a centre $s \in S$. According to Lemma 6, each atom A of the collection Q_1, \ldots, Q_k corresponds to a component B of $E^n \setminus (H_1 \cup \ldots \cup H_k)$, where $H_i = \iota(S_i \setminus \{s\})$. The component B is unbounded, by Lemma 1, and therefore s is an accumulation point of the set $\iota(B \setminus \{s\})$. Hence, the inclusions from Lemma 6 give

$$\iota(B\setminus\{s\})\subset A\subset \overline{\iota(B\setminus\{s\})},$$

which implies the connectedness of the atom A. Indeed, as n > 1, no point cuts B that is an open connected subset of the space E^n .

If k = n+1, then according to Theorems 1 and 2, the intersection $S_1 \cap \ldots \cap S_n$ is a two-point set $\{s, s'\}$ such that s' belongs to Q_{n+1} and s does not belong to its closure \overline{Q}_{n+1} . Applying the same inversion ι we get the ball $\iota(Q_{n+1})$ which contains the origin of the oblique coordinate system constructed in Lemma 1. It follows that both sets

$$B' = (B \setminus \{s\}) \cap \iota(Q_{n+1}), \quad B'' = (B \setminus \{s\}) \setminus \iota(Q_{n+1})$$

are connected and satisfy the inclusions

$$\iota(B') \subset A \cap Q_{n+1} \subset \overline{\iota(B')}, \quad \iota(B'') \subset A \setminus Q_{n+1} \subset \overline{\iota(B'')},$$

which yield the connectedness of all atoms of the collection Q_1, \ldots, Q_{n+1} .

Remark. In the proof of Theorem 5, in the case $k \leq n$, the settheoretical independence of the collection of balls Q_1, \ldots, Q_k was used only to assure the existence of a point belonging to all the spheres S_1, \ldots, S_k and the unboundedness of each component of $E^n \setminus (H_1 \cup \ldots \cup H_k)$. The last condition is always fulfilled provided that $k \leq n$. Thus for $k \leq n$ we could have a stronger theorem, namely that if the intersection of spheres of the balls Q_1, \ldots, Q_k in the space E^n is non-void, then all atoms of the collection Q_1, \ldots, Q_k are connected. The condition $k \leq n$ is necessary here, as is shown by an example even for the plane E^2 (see fig. 1).

THEOREM 6. The centres of balls that form a set-theoretically independent collection in the space E^n constitute a linearly independent system of points in E^n (4).

Proof. The statement is obvious for $k \leq 2$. Let a collection of balls Q_1, \ldots, Q_k (where k > 2) be set-theoretically independent in E^n . Then, as we have seen in Theorem 4, the inequality $k \leq n+1$ holds. If the centres of the balls Q_1, \ldots, Q_k were not linearly independent, they would lie all on a (k-2)-dimensional hyperplane H. In view of Theorem 5

⁽⁴⁾ Theorems 6 and 7 give an answer to an unpublished problem raised by B. Weglorz.

and the inequality k-1>1, we could apply Lemma 7 successively n-k+2 times. The resulting collection of (k-2)-dimensional balls would be set-theoretically independent in the (k-2)-dimensional subspace H and would consist of k balls. But this is impossible, since each such collection can consist at most of (k-2)+1=k-1 balls.

THEOREM 7. If a system of points p_1, \ldots, p_k in the space E^n (where $1 < k \le n+1$) is linearly independent, then the balls with centres at the points p_1, \ldots, p_k , respectively, and with equal radii, greater than the radius of the (k-1)-dimensional ball circumscribed on the points p_1, \ldots, p_k (5), form a set-theoretically independent collection of balls in E^n .

Proof. Let us notice that the case k < n+1 reduces to the case k = n+1. Indeed, cutting the balls by the (k-1)-dimensional hyperplane H^{k-1} , that passes through the points p_1, \ldots, p_k , we obtain the (k-1)-dimensional balls in the subspace H^{k-1} which have centres at the points p_1, \ldots, p_k and equal radii. The set-theoretical independence of the so obtained collection of balls in H^{k-1} implies that of the original collection in E^n .

Now, we shall prove the theorem for k=n+1, by induction on n. If n=1, the theorem holds, because every two one-dimensional balls on the line E^1 , i. e., two intervals, with centres at the points p_1 and p_2 , respectively, and of the same length, greater than the distance between p_1 and p_2 , must intersect, thus they must form a set-theoretically independent collection in E^1 . Assume the theorem holds for n points and consider a system of points p_1, \ldots, p_{n+1} linearly independent in E^n . The radius ϱ_n of the n-dimensional ball C^n circumscribed on the points p_1, \ldots, p_{n+1} is not less than the radius ϱ_{n-1} of the (n-1)-dimensional ball C^{n-1} circumscribed on the points p_1, \ldots, p_n . It follows that the balls $\varrho_1, \ldots, \varrho_n$ with centres at the points $\varrho_1, \ldots, \varrho_n$, respectively, and with radii equal to $\varrho > \varrho_n \geqslant \varrho_{n-1}$ form a set-theoretically independent collection in e_n . By Theorem 1, the intersection of spheres of the balls $\varrho_1, \ldots, \varrho_n$ is a two-point set $\varrho_1, \ldots, \varrho_n$ is a two-point s

Let H be the (n-1)-dimensional hyperplane passing through p_1, \ldots, p_n . Since the system p_1, \ldots, p_{n+1} is linearly independent, we have $p_{n+1} \in E^n \backslash H$.

The points s and s' have the same distance ϱ from all the points p_1, \ldots, p_n . Thus s and s' lie symmetrically with respect to H, on the line perpendicular to H and going through the centre of the ball C^{n-1} . We have also $C^{n-1} = H \cap C^n$. Moreover, the equalities

$$C^{n-1} = H \cap K = H \cap K'$$

⁽⁵⁾ That is a ball whose boundary is the (k-1)-dimensional sphere circumscribed on the points p_1, \ldots, p_k in the (k-1)-dimensional hyperplane generated by them.

hold, where K and K' are (n-1)-dimensional balls with the same radii equal to ϱ and with centres s and s', respectively. So we see that all three balls C^n , K and K' belong to the bundle of balls in E^n , determined by the (n-1)-dimensional ball C^{n-1} . Let P denote the open half-space — one of the components of $E^n \setminus H$ — to which p_{n+1} belongs. Since $\varrho_n < \varrho$ and only the balls K, K' in this bundle have radius ϱ , the cup $P \cap C^n$ is contained either in the ball K or in the ball K'. We can assume that

$$P \cap \overline{C^n} \subset K$$
,

but then we also have

$$P \cap \overline{K'} \subset C^n$$

(fig. 2). It follows from the two last inclusions that $p_{n+1} \in K \setminus K'$. In fact, p_{n+1} lies on the sphere of the ball C^n and it belongs to the half-space P.

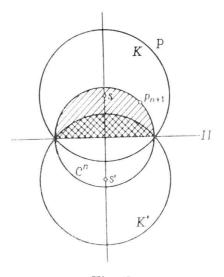


Fig. 2

Therefore $p_{n+1} \in K$ and $p_{n+1} \notin \overline{K}'$. Hence the distance between p_{n+1} and s is less than ϱ while the distance between p_{n+1} and s' is greater than ϱ . Thus the ball Q_{n+1} , having centre p_{n+1} and radius ϱ , contains s and its closure \overline{Q}_{n+1} does not contain s'. According to Theorem 2, the collection of the balls Q_1, \ldots, Q_{n+1} is set-theoretically independent.

Reçu par la Rédaction le 30. 6. 1964