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Recall that an atom of a collection of sets Z,, ..., Z; in a space X
is understood to mean a set of the form Z1 ~ ... ~ Zi’f, where j; = +1
(i=1,...,k), Z' =%, and %Z~' = X\Z. There are at most 2" atoms
of a collection consisting of k sets, because each atom corresponds to
a sequence ji, ..., j,. The collection of sets is said to be set-theoretically
independent if all its atoms are non-void; then there are exactly 2" atoms.

In this paper, prepared with kind help of Dr. A. Lelek, we shall
give conditions for a finite collection of balls in the n-dimensional
Euclidean space E" to be set-theoretically independent. We also establish
some relations between the set-theoretical independence of balls and the
linear independence of their centres.

Unless the contrary is explicitly stated a ball will throughout be
an open ball. Every ball is determined by a sphere — the boundary of
this ball in the Euclidean space. Let us observe that with these definitions
each non-void atom of a collection of balls has a non-void interior.

First we shall show some geometrical lemmas. The idea of the proofs
of theorems (1) is contained in Lemma 6.

LeMMA 1. If H,, ..., H; (where k < n) are (n—1)-dimensional hyper-
planes in the space E" and the intersection H, ~ ... ~ Hy is an (n—k)-
dimensional hyperplane, then there exists an oblique coordinate system
in E" such that H; has the equation x; = 0 (i = 1, ..., k). In this coordinate
system for each component O of B"™\(H, o ... w Hy) there ewists a sequence
£y ...y & Of numbers e; = +1 such that C is the set of all points xeE" of
the form @ = (Xyy ..., &,), Where 0 # x; = glag| for © =1,..., k.

Proof. Let us choose vectors a,,...,a, in E" so that

k
1° a; is parallel to Y H; (i =1,..., k),
j=1
- i#i

(1) This concept, depending on the application of inversions, is due, among
others, to A. Ramer and R. Ramer.
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2° @; is not parallel to H; (i =1,..., k),
3° @41y ...,a, are parallel to H=H, ~...~ H, and linearly
independent.

Then the vectors a,, ..., a, are linearly independent. In fact, suppose
on the contrary that

ﬂla1+"'+ﬁkak+ﬁk+lak+l+- --—"ﬂnan =0

and f14...+ By > 0. Thus by condition 3° there exists an index i < k
such that f#; # 0, i. e. the vector @; can be represented as a linear com-
bination of the vectors a,,...,a;, ,,@a;,,,...,a, which are all parallel
to H;, in view of conditions 1° and 3°. This contradicts condition 2°.

Therefore we can construct an oblique coordinate system such
that its axes x; (¢ =1, ..., n) are parallel to the vectors a;, respectively,
and its origin o belongs to H. The point o exists, since n—k > 0 implies
H # @. The equation z; = 0 determines H; (¢ = 1, ..., k). Our construc-
tion immediately gives the conclusion concerning the components C.
It is sufficient to see that each point of "\ (H, ... w H,) has the first
k coordinates non-vanishing.

LemmA 2. If H,,..., H,, G (where k <n) are (n—1)-dimensional
hyperplanes in the space E", the intersection H, ~ ... ~ H; is an (n— k)-
dimensional hyperplane contained in G, and P,, P, are open half-spaces,
on which G cuts E", then the set E"\(H, o ... v H},) has a component
contained in Py, and a component contained in P,.

Proof. Let, in the oblique coordinate system from Lemma 1, the
hyperplane G have the equation

&+ oo+ G+ e B+ ap @y, = 0.
Since H = H, ~... ~ H, =« @ and the equations
=8y —ee. =@ =0
determine H, it follows that
G+t o =0,

is also an equation for @, and that a}--...+ ¢} > 0. We can admit the
half-spaces P, and P, to be given by the inequalities

GO+ + o <0 and a4 4 aa >0,
respectively. Putting
(—1)signa;, if a; #0,
41, if =0,

Eij =
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for ¢ =1,...,k, and j =1,2, we determine the required components
by the formula C; = {(®y,...,®,): 0 #x; = ¢;5la;] for ¢ =1,...,k},
according to Lemma 1. Obviously, ¢; < P, and C, < P,.

LeEMMA 3. Let H,, ..., Hy (where k < m) be (n—1)-dimensional hyper-
planes in the space E™ such that the intersection H = H, ~ ... ~ H; is
an (n— k)-dimensional hyperplane. If K is an (n—1)-dimensional hyper-
plane or a ball in E", and H ~ K = O, then the set E"\(H, w ... v Hy)
has a component disjoint with the closure K of K.

Proof. If K is a ball, let us construct the half-line I going out from
the centre of K and perpendicular to H or — for H = {p} being one-
point set — passing through p. In the point of intersection of L with
the sphere of the ball K let us construct the (n—1)-dimensional hyper-
plane G’ perpendicular to L. If K is an (n—1)-dimensional hyperplane,
let us set ¢’ = K. Let G be the (n—1)-dimensional hyperplane parallel
to ' and containing H. Obviously, G satisfies the conditions of Lemma 2.
Since either K ~ P, =@ or K ~ P, = @, there exists by Lemma 1
a component of E"\(H,; v ... w H,) that is disjoint with K.

LeMMA 4. The union H, o ... v Hy of (n—1)-dimensional hyperplanes
Hy,..., H, (where k < n) cuts the space E" on 2 components if and only
if the intersection H, ~ ... ~ Hy is an (n— k)-dimensional hyperplane.

Proof. We have to prove that the condition formulated in Lemma 4
is (a) sufficient, and (b) necessary.

(a) Let us consider the coordinate system from Lemma 1. Different
components of E"\(H, o ... v H;) correspond to different sequences
€1y ...y &, Of the numbers ¢; = 1. There are 2" those sequences.

(b) The necessity of the condition will be proved by induction.
For one hyperplane it is obvious. Let us suppose that it holds for k—1
hyperplanes and consider (n—1)-dimensional hyperplanes H,, ..., H;
such that the union H, o ... u H; cuts E” on 2* components. Then the
union H, o ... v H;,_, cuts E" on 2¢! components, because all com-
ponents of E"\(H; o ... o Hj_;) are convex, and thus adding H, to
the first k—1 hyperplanes the number of components can at most be
doubled. By the induction hypothesis, the intersection H' = H, ~ ...
..~ Hy ; i8 an (n—k-1)-dimensional hyperplane. Since H, is an
(n—1)-dimensional hyperplane, the intersection

.Hlf\..-th:H’mHk

can be 1° the void set, 2° the hyperplane H’, or 3° an (n— k)-dimensional
hyperplane. In the cases 1° and 2° H, cannot intersect all components
of B"\(H, v ... v H;_,) according to Lemmas 3 and 2, respectively,

Colloquium Mathematicum XIII.2 15



226 J. ANUSIAK

hence H, u ... v H; cannot eut E" on 2 components. So only the case 3°
is possible, which completes the proof.

LemMMA 5. If the intersection H, ~ ... ~ H, of (n—l)-dimensiondl
hyperplanes is a one-point set {p}, then p is an accumulation point of each
component of the set E"~\(H, o ... w H,).

Proof. Take the oblique coordinate system given in Lemma 1.
Obviously, p is its origin. Lemma 1 immediately implies that each com- -
ponent of E"\(H, o ... H,) intersects every ball with centre at the
point p.

LEMMA 6. Let Q,, ..., Q, be balls in the space E" and let ¢: M" —> M"
be an inversion of the Mobius space M™ > E" with centre at a point seS, ~

-~ Sy, where 8; is the sphere of the ball Q; (¢ =1, ..., k). Denote by H,
the (n—1)-dimensional hyperplane «(S;\{s}). If B is a component of the
set B"\(H, o ... v Hy), then there exists an atom A of the collection of
balls Q,, ..., Q; in E" such that

1(B\{s}) =IntA c A c (B \{s}) u {s},

where Int Z and Z denote the interior and the closure of the set Z in E",
respectively. Taking the atom A for the component B one determines a 1-1
correspondence between the components of the set B"\(H, o ... v H;) and
the mon-void atoms of the collection Q,, ..., Q.

Proof. The open half-spaces, on which H; cuts E", are the sets ¢(Q,)
and (E"™\Q;) w {s}. Since

Q;=IntQ; and E"\Q, = IntQ;’,

there exist numbers j; = +1 (i =1, ..., k) such that
k

k
(i) B\{s} = M(IntQ}) = (Int (") Ql,

=1

where the last equality is a consequence of the fact that the inversion .
is 1-1. Moreover, the closed half-spaces containing the component B
are the closures of the sets ((IntQ}) in B" (i =1, ..., k), and the inter-
section of these closed half-spaces is equal to B. Observe that every set
L(QlN{s}) is an open half-space or a closed half-space without the point s.
Hence we obtain
k
(i) | ((@\{s}) = B.

(3

Let 4 = Qi ~... ~Q}i. According to (i), the set (B {s}) is the
interior of 4 in E". Since the inversion ¢ transforms E™\ {s} homeomorphic-
ally onto itself and the closure of a subset Z « E™\{s} in the space
E™ {s} is equal to Z\ {s}, we have
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((AN{SIN(8)) = ((AN{s})\{s} = QIZASCING

ko ' R
Ql W@IN{sHN{s} = B\{s} = B\{s}\{s},

I

by virtue of (ii). It follows that
A = (AN{s}) v {s} = (AN{si\{s}) v {8}
< UBNBINE) o {8} = o(BN\fs}) v (s}

In this way we have proved the first conclusion of Lemma 6, contain-
ing inclusions. It implies the second conclusion. Indeed, the function
under which the atom A corresponds to the component B must be 1-1,
for the inversion ¢ is so. Each non-void atom of the collection ¢, ..., @x
corresponds to some component B, because this atom has a non-void
interior disjoint with §; v ... U 8, and the inversion ¢ is a homeomor-
phism of the Mobius space M" onto itself, sending H, o ... v H; into
S oo 8.

Remark. The point s can be an isolated point of an atom A. Tt is
so e. g. for the atom

A=07" ~Q;" ~ Q5"
of the collection of three circles @,,@,, @, on
the plane F? whose boundaries intersect at
a single point s (fig.1). Thus the symbol {s}
written down at the end of inclusions in Lem-
ma 6 cannot be removed from this formula.

LeMMA 7. If a collection of balls @, ..., Q,
(where k < n) in the space E" is set-theoretically
independent and all its atoms are connected, then
for every (n—1)-dimensional hyperplane H passing through the centres of
the balls Q, ..., Qx the collection H ~ Q,, ..., H ~ @, is a set-theoretically
independent collection of balls in the subspace H.

Proof. All the atoms 4; (i =1,...,2") of the collection @, ..., Q,
are non-void, thus there exist points pyed; (i =1,...,25. If p,¢H,
then, by symmetry of the collection with respect to H, also the point p;,
symmetrie to p; with respect to H, belongs to A;. By the connectedness
of atoms, there exists an arc joining p; with p;, and completely con-
tained in 4,. Obviously, this arc intersects H. Consequently, the atoms
HA~A; (i=1,...,2" are non-void.

THEOREM 1. A collection of balls @y, ..., Qr (where k <n) in the
space E" is set-theoretically independent if and only if the intersection of
spheres of the balls Qy, ..., Q; is an (n— k)-dimensional sphere.

Fig. 1
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Proof. Denote by §; the sphere of the ball Q; (i =1,..., k).

(a) Let us suppose that the intersection S =8, ~...~ 8, is an
(n— k)-dimensional sphere. The set S obviously contains at least two
points, because n—k > 0. Let «: M" — M™ be an inversion with centre
at seS. The intersection H, ~ ... ~ H; of the hyperplanes H; = ¢(8;\{s})
is an (n— k)-dimensional hyperplane, thus according to Lemma 4 there
are 2" components of E'™(H, < ... v Hy). Consequently, by Lemma 6,
there are 2* non-void atoms of the collection Q1 ..., Q, i. e., this collec-
tion is set-theoretically independent.

(b) The converse implication will be proved by induction. For
k = 1 it trivially holds. Assume that it holds for k—1 and that a collec-
tion of balls @,,...,@Q; (where k > 1) is set-theoretically independent.
Then the collection @,,...,Q;_; is set-theoretically independent too.
Hence the intersection 8" = 8, ~ ... ~ 8;_; is an (n— k-+1)-dimensional
sphere. Let us suppose that the intersection

Bimneen8e=8n~8;

is not an (n— k)-dimensional sphere. The sphere S, being (n—1)-dimen-
sional, our supposition is possible only in the following two cases:

i) 8 <8, (i) 8 A 8 < {s).

We shall eliminate both these possibilities. In the case (i) we have
8" =81 ~...~n 8. Let us apply, just as in the part (a) of this proof,
an inversion with centre at seS8’. We obtain & (n— 1)-dimensional hyper-
planes, whose intersection is an (n—k-1)-dimensional hyperplane.
Thus, according to Lemma 4, they cannot cut E" into 2* pieces. Hence,
by Lemma 6, there are less than 2* non-void atoms of the collection
@15 .., @i, and terefore this collection is not set-theoretically indepen-
dent, contrary to the assumption. In the case (ii) the inequality & < =
implies that there exists a point s such that se8’ and s +# s’. An inversion ¢:
M" — M" with the centre at s maps the spheres 8, ..., 8, , without
the point s onto some (n—1)-dimensional hyperplanes H,, ..., H; ,,
respectively. Let K denote the ball bounded by the sphere «(8,) in E".
Sinee k < n, the intersection H = H, ~ ... ~ H;_, is at least a line.
But (i) implies H ~ ¢(8;) = {¢(s')}, and it follows that H lies outside K.
In view of Lemma 3, the closed ball K does not intersect all the compo-
nents of E"\(H, < ... v H;_,). However, ((K) contains @, or its com-
plement. This shows, by Lemma 6, that the interior of an atom of the
collection @y, ..., @, is void, contrary to the assumption. The proof of
Theorem 1 is complete.
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Applying the above theorem to k¥ = » we see that the intersection of
spheres in every set-theoretically independent collection of » balls in the
space K" is a two-point set.

THEOREM 2. Let the collection of balls Q,, ..., Q, in the space E" be
set-theoretically independent and let the two-point set {s, s’} be the inter-
section of spheres of the balls Q,, ..., Q,. Let Q,., be a ball. The collection
Q1y ..oy Qi1 ts set-theoretically independent if and only if the ball Q, .,
contains one of the points s and s', and its elosure Q, ., does not contain the
remaining one.

Proof. Denote by 8; the sphere of the ball @; (¢ =1,...,n+1).

(a) We can assume that s¢Q, 41 and s'e@),. . After an inversion .:
M" -~ M"™ with the centre at s we get the (n—1)-dimensional hyperplanes
H; = «(8;\{s}) which intersect at a single point p = i(s’) and the ball
(@, ,,) which contains p. By Lemma 5, this ball contains points from
all the components of E"\(H, v ... v H,). Obviously, all those compo-
nents, being unbounded by Lemma 1, have common points also with
the complement of ¢,.,. Thus, by Lemma 6, the collection of balls
@1y ..., Quyy 18 set-theoretically independent.

(b) We shall prove that the collection @,, ..., @,,, is not set-theore-
tically independent in each of the following four cases:

(i) 3¢Qn+15 8'¢Qn+l’ (ll) SESn+17 3,¢Sn+l7

(iii) $eSy 1,8 €81, (iv) SeQn i1, 8 €@y

In the cases (i), (ii), and (iii), we do the same as in the part (a) above.
Consequently, in the case (i) we get the ball «(Q,.,), disjoint with H, ~
..~ H, = {p}. By Lemma 3, this ball does not meet all the components
of B"\(H, v ...u H,). Tt follows from Lemma 6 that @, , does not
meet the interior of an atom of the collection @,, ..., Q,. In the case (ii)
we get the (n—1)-dimensional hyperplane H, , = ¢(8,,,\{s}), which
does not pass through p. By Lemma 3, the hyperplane H, ., does not
meet any component B of E"\(H, < ... v H,). Therefore the closure P
of one of the half-spaces on which H,  , cuts E" does not meet B. How-
ever, the set «(P) contains @,., or its complement. It thus follows from
Lemma 6 that @, , or its complement does not meet the interior of an
atom of the collection @,, ..., Q,. In the case (iii) we get the hyperplane
H, ., passing through p. In view of Lemma 2, both half-spaces on which
H, ., cuts E" contain the whole of some components of E"\(H, u ...
.. v H,). Since one of these half-spaces is the set ¢(@,,;) and seS,,, =
< @1, it follows from Lemma 6 that the closure @, +1 contains an
atom of the collection @, ..., Q,. The case (iv) reduces to the case (iii),
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for we can find a ball contained in @, , and such that both points s
and s’ lie on its sphere.

THEOREM 3. If a collection of balls Q,, ..., Qr (where k < n+1) in the
space " is set-theoretically independent, then the intersection of spheres
of the balls Qy, ..., Qy is the set of all points xeE" such that x is an accumu-
lation point of each atom of the collection Q,, ..., Q.

Proof. Let zeS =8, ~... ~ 8;, where §; is the sphere of the
ball @; (¢ =1,..., k). Therefore S # @ and Theorem 2 implies k < n.
Take a ball @, with centre # and with a radius sufficiently small, so
that the sphere of @, , cuts E" between some points of S. According to
Theorems 1 and 2, the collection Q,, ..., Q; 41 18 set-theoretically inde-
pendent, and thus @;., has points from all the atoms of the collection
@y o-ey Qi

Conversely, if y¢S, then y¢8; for some ¢ =1,...,k Therefore
a ball with centre y and with a radius sufficiently small either does not
intersect ; or its complement.

THEOREM 4. Hvery sei-theoretically independent collection of balls in
the space E" can be extended to a maximal set-theoretically independent
collection, which consists of n--1 balls.

Proof. It is known (2) that every set-theoretically independent
collection of balls in the space E" consists at most of n+1 balls. Let
a collection of balls @, ..., Q, (where k < n) be set-theoretically inde-
pendent in E". By Theorem 1, the intersection of spheres of the balls
@1y ...,Qr is an (n—k)-dimensional sphere, thus it contains at least
two points. Construct a ball @, , with centre at one of them and such
that its closure @, , does not contain the remaining one. According to
Theorem 3, the collection Q,, ..., Q.,, is set-theoretically independent.

THEOREM 5. All atoms of a set-theoretically independent collection of
balls in the space E" (where n > 1) are connected (3).

Proof. Let @,,...,Q; be a set-theoretically independent collection
of balls in E". Then, as we know (2), we must have & < n-+1. Denote
by 8; the sphere of the ball Q; (: =1, ..., k).

If k¥ <n, then by Theorem 1 the mtersectlon S§=8,n~n...a8,
is an (n—k)-dimensional sphere. Let ¢: M™ — M™ be an inversion with

() A. Rényi, C. Rényi et J. Suranyi, Sur Vindépendance des domaines
simples dans Uespace euclidien a n dimensions, Colloquium Mathematicum 2 (1951),
p. 130-135.

(®) A. Lelek has generalized Theorem 5 to the following form:

If an atom of a finite collection of open or closed balls in the space E™ (where n > 1)
is non-void, then the opposite atom of the collection is commected.

Here by the opposite atom to an atom corresponding to a sequence Fyi 1 vasp Jls
one means the atom corresponding to the sequence —j,, ..., —jk.
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a centre seS. According to Lemma 6, each atom A of the collection
Q,, ..., Q, corresponds to a component B of E"\(H, v ... v Hy), where
H; = 1(8;\{s}). The component B is unbounded, by Lemma 1, and
therefore s is an accumulation point of the set :(B>{s}). Hence, the
inclugions from Lemma 6 give

W(B\{s}) = 4 = «(B\{s}),

which implies the connectedness of the atom A. Indeed, as » > 1, no
point cuts B that is an open connected subset of the space E".

If k¥ = n-1, then according to Theorems 1 and 2, the intersection
S~ ...~ 8, is a two-point set {s, s’} such that s’ belongs to @,, and s
does not belong to its closure @, ,. Applying the same inversion ¢ we
get the ball (@), ,,) which contains the origin of the oblique coordinate
system constructed in Lemma 1. It follows that both sets

B' = (B\{s}) ~ t(@us1), B’ = (B\{s})\t(@ny1)

are connected and satisfy the inclusions

(B') € A ~Quuy < u(B), «(B")c ANQ., < t(B"),

which yield the connectedness of all atoms of the collection @,,...,@, ;.

Remark. In the proof of Theorem 5, in the case k < n, the set-
theoretical independence of the collection of balls @,, ..., @, was used
only to assure the existence of a point belonging to all the spheres
S,,..., 8 and the unboundedness of each component of E"\(H, o ...

..w H,). The last condition is always fulfilled provided that & < n.
Thus for k¥ <n we could have a stronger theorem, namely that if the
intersection of spheres of the balls @,, ..., @, in the space E" is non-void,
then all atoms of the collection @,, ..., @, are connected. The condition
k < m is necessary here, as is shown by an example even for the plane K2
(see fig. 1).

THEOREM 6. The centres of balls that form a set-theoretically indepen-
dent collection in the space E" constitute a linearly independent system of
points in E" ().

Proof. The statement is obvious for %k < 2. Let a collection of
balls Q,,...,Q; (where k > 2) be set-theoretically independent in E".
Then, as we have seen in Theorem 4, the inequality ¥ < n-+1 holds. If
the centres of the balls @,, ..., @, were not linearly independent, they
would lie all on a (k— 2)-dimensional hyperplane H. In view of Theorem 5

(4) Theorems 6 and 7 give an answer to an unpublished problem raised by
B. Weglorz.
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and the inequality t—1 >1, we could apply Lemma 7 successively
n— L+ 2 times. The resulting collection of (& — 2)-dimensional balls would
be set-theoretically independent in the (k—2)-dimensional subspace H
and would consist of % balls. But this is impossible, since each such
collection can consist at most of (k—2)+1 = k—1 balls.

THroREM 7. If a system of points p,, ..., pp in the space E" (where
1 <k <n+t1) is linearly independent, then the balls with centres ai the
POINES Py ...y Pi, Tespectively, and with equal radii, greater than the radius
of the (k—1)-dimensional ball circumseribed on the points pyy ..., pr (%),
form a set-theoretically independent collection of balls in B".

Proof. Let us notice that the case ¥ < n-+1 reduces to the case
k = n-+1. Indeed, cutting the balls by the (k—1)-dimensional hyperplane
H*"', that passes through the points Pis -y Pry, We obtain the (k—1)-
dimensional balls in the subspace H"~! which have centres at the points
Pis--+y Pr and equal radii. The set-theoretical independence of the so
obtained collection of balls in H*~' implies that of the original collec-
tion in E". _

Now, we shall prove the theorem for %k — n—+1, by induction on n.
If n =1, the theorem holds, because every two one-dimensional balls
on the line K, i. e., two intervals, with centres at the points p, and p,,
respectively, and of the same length, greater than the distance between
P, and p,, must intersect, thus they must form a set-theoretically inde-
pendent collection in E'. Assume the theorem holds for m points and
consider a system of points py,...,p,,, linearly independent in K"
The radius g, of the n-dimensional ball " circumscribed on the points
Pis -3 Ppya 18 notb less than the radius o, , of the (n—1)-dimensional
ball 0"~! circumscribed on the points p,,...,p,. It follows that the
balls @y, ...,Q, with centres at the points Piy +++y Pu,y Tespectively, and
with radii equal to ¢ > o, > 0, , form a set-theoretically independent
collection in E". By Theorem 1, the intersection of spheres of the balls
Q1y ..., @y I8 2 two-point set {s,8'}.

Let H be the (n—1)-dimensional hyperplane passing through
Piy«+ry Py Since the system p,,...,p,,, is linearly independent, we
have p,, ., e "™ H.

The points s and s’ have the same distance ¢ from all the points
P1y+++y Pu- Thus s and ¢’ lie symmetrically with respect to H, on the
line perpendicular to H and going through the centre of the ball ¢" .
We have also C""' = H ~ (™. Moreover, the equalities

(Jm_IZHmK=Hr\K’

(°) That is a ball whose boundary is the (k—1)-dimensional sphere circumscribed
on the points p;, ..., py in the (k—1)-dimensional hyperplane generated by them.
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hold, where K and K’ are (n—1)-dimensional balls with the same radii
equal to p and with centres s and s’, respectively. So we see that all three
balls ", K and K’ belong to the bundle of balls in E", determined by
the (n—1)-dimensional ball C" '. Let P denote the open half-space —
one of the components of B\ H — to which p, ., belongs. Since g, < o
and only the balls K, K’ in this bundle have radius p, the cup P ~ C"
is contained either in the ball K or in the ball K’. We can assume that

P~C"cK,
but then we also have
P I I?, [== On

(fig. 2). It follows from the two last inclusions that p, e K K'. In
fact, p,., lies on the sphere of the ball 0" and it belongs to the half-space P.

Fig. 2

Therefore p,,,,¢K and p,, ¢ K'. Hence the distance between p,. , and s
is less than p while the distance between p,., and s’ is greater than p.
Thus the ball ,,,, having centre p, , and radius g, contains s and its
closure @,., does not contain s’. According to Theorem 2, the collection
of the balls @, ..., Q,,, is set-theoretically independent.

Regu par la Rédaction le 30. 6. 1964



