FASC. 1

ON SUBSETS OF INDECOMPOSABLE CONTINUA

BY

H. COOK (AUBURN, ALA., U.S.A.)

- 1. Introduction. In this paper are presented some results of a study of compact metric indecomposable continua. Throughout this paper, I denotes the set of all points of a compact metric space and is assumed to be an indecomposable continuum. Theorems 135-142 of [7], Ch. I, are used without further explicit reference to them.
- 2. Subsets of I which are the sums of countably many closed point sets. We give now the following

Definition. If K is a point set, then the K-composant of I, denoted by CP(K), is the set to which p belongs if, and only if, p is a point and there exists a proper subcontinuum of I containing both p and a point of K. Note that, if x is a point, CP(x) is the composant, containing x, of I.

Theorem 1. If K is a closed point set, then the K-composant of I is the sum of countably many closed point sets.

Proof. Suppose that K is a closed point set, x is a point, and D_1, D_2, \ldots is a sequence of domains closing down on x such that $I-D_1$ contains a point of K. For each n, let M_n denote the sum of all the components of $I-D_n$ which intersect K. Suppose that, for some n, p is a limit point of M_n . Then there exists a sequence p_1, p_2, \ldots of points of M_n converging to p. For each i, denote by q_i a point of K lying in the component C_i of $I-D_n$ containing p_i . Then there exists a subsequence q_{n_1}, q_{n_2}, \ldots of the sequence q_1, q_2, \ldots converging to a point q of $K \cdot (I-D_n)$, and the sequence C_{n_1}, C_{n_2}, \ldots has a limiting set which is a continuum C lying in $I-D_n$ and containing both p and q [4]. Hence, p belongs to M_n and M_n is closed. But CP(K) is either $M_1+M_2+\ldots$ or $CP(x)+M_1+M_2+\ldots$ and, in either case, is the sum of countably many closed point sets.

THEOREM 2. If the point set K is the sum of countably many closed point sets, then so is the K-composant of I.

Proof. Evidently, if $K = K_1 + K_2 + ...$, then $CP(K) = CP(K_1) + CP(K_2) + ...$ Hence, if each K_i is closed, CP(K) is the sum of countably many closed point sets.

THEOREM 3. Suppose that, for each positive integer n, K_n is a closed subset of I and $K_1+K_2+\ldots$ intersects every composant of I. Then there exists a positive integer n such that K_n intersects every composant of I.

Proof. Suppose that for no n does K_n intersect every composant of I. For each n, $CP(K_n)$ is the sum of countably many closed point sets such that, if g is one of them, then every point of g is a limit point of I-g. But $I=CP(K_1)+CP(K_2)+\ldots$ and, therefore, is the sum of countably many closed point sets such that, if g is one of them, then every point of g is a limit point of I-g, contrary to [7], Ch. I, Th. 53.

THEOREM 4. Suppose that K is the sum of countably many closed point sets (i. e. K is an F_{σ} -set), and intersects every composant of I. Then K contains a non-empty closed point set M such that, for every composant C of I, $C \cdot M$ is dense in M.

Proof. By Theorem 3, K contains a closed point set M_1 which intersects every composant of I. Let φ denote the least ordinal whose cardinality is greater than that of the continuum. Denote by Q a well ordered sequence $q_1, q_2, \ldots, q_a, \ldots$ ($\alpha < \varphi$), such that (1) each term of Q is a composant of I, and (2) if $\alpha < \beta < \varphi$, $q_\alpha = q_\beta$, and C is a composant of I distinct from q_a , then there exists an ordinal γ ($\alpha < \gamma < \beta$), such that $q_\gamma = C$. Let $M_{11}, M_{12}, \ldots, M_{1a}, \ldots$ ($\alpha < \varphi$), denote the sequence such that (1) $M_{11} = M_1$; (2) for each $\alpha < \varphi$, $M_{1,\alpha+1} = \operatorname{cl}(q_\alpha \cdot M_{1a})$; and (3) if β is a limit ordinal $q_\alpha \in \mathcal{C}$, $q_\alpha \in \mathcal{C}$, denote the sequence such that (1) $q_\alpha \in \mathcal{C}$, $q_\alpha \in \mathcal$

Suppose that, for some ordinal $a < \varphi$, M_{1a} is empty. Denote the least such ordinal a by a_1 . Then a_1 is not a limit ordinal, and q_{a_1-1} does not intersect M_{1,a_1-1} . Now, M_1-M_{1,a_1-1} is the sum of countably many closed point sets $K_{11}, K_{12}, \ldots; M_{1,a_1-1}$ is closed; and $M_1 = M_{1,a_1-1} + K_{11} + K_{12} + \ldots$ intersects every composant of I. Thus, by Theorem 3, at least one of the point sets K_{11}, K_{12}, \ldots intersects every composant of I; denote one such by M_2 . Let $M_{21}, M_{22}, \ldots, M_{2a}, \ldots$ $(a < \varphi)$ denote the sequence such that (1) $M_{21} = M_2$; (2) for each $a < \varphi$, $M_{2,a_1+1} = \operatorname{cl}(q_a \cdot M_{2a})$; and (3) if β is a limit ordinal $< \varphi$, M_2 is the common part of the point sets $M_{21}, M_{22}, \ldots, M_{2a}, \ldots$ $(a < \beta)$. Evidently, M_{2,a_1-1} is empty, for, if it were not, it would be a subset of M_{1,a_1-1} , which does not intersect M_2 . Let a_2 denote the least ordinal a for which M_{2a} is empty. Then a_2 is not a limit ordinal and $a_2 < a_1$. Hence, by repeating the above process, there exists a closed subset M_3 of $M_2 - M_{2,a_2-1}$ which intersects every

composant of I and an ordinal $a_3 < a_2$. Indeed, by continuing this process, we find that there exists an infinite decreasing sequence a_1, a_2, \ldots of ordinals, which is impossible. Thus, the assumption that there exists an ordinal $a < \varphi$ such that M_{1a} is empty is false.

Now, M_1 is of the power of the continuum. Therefore, there exists an ordinal $\alpha < \varphi$ such that, if δ is an ordinal $(\alpha < \delta < \varphi)$, $M_{1\alpha} = M_{1\delta}$; and, hence, $\operatorname{cl}(q_\delta \cdot M_{1\alpha}) = M_{1\alpha}$. Thus, $M_{1\alpha}$ satisfies the conditions for M in the conclusion of Theorem 4.

3. An application of Theorem 4. Bing [1] has raised the question as to whether there exists a reversibly continuous transformation of a pseudo-arc M into itself, other than the identity, which leaves every composant of M fixed. Since every non-degenerate subcontinuum of a pseudo-arc is a pseudo-arc [6] and has the fixed point property [3], the following theorem may have some bearing on Bing's question:

THEOREM 5. Suppose that (1) every non-degenerate proper subcontinuum of I is indecomposable and has the fixed point property, and (2) f is a monotone mapping of I into I such that, for each composant C of I, f(C) = C. Then, for every composant C of I, there exist infinitely many points p of C such that f(p) = p.

Proof. Suppose that C is a composant of I such that, if p is a point of C, $f(p) \neq p$. Let x denote a point of C and K_1 denote a proper subcontinuum of I containing both x and f(x). Since $K_1+f(K_1)$ is an indecomposable continuum, one of the two continua K_1 and $f(K_1)$ is a subcontinuum of the other, and, since K_1 has the fixed point property and f leaves no point of K_1 fixed, K_1 is a proper subset of $f(K_1)$. Similarly, one of the two continua K_1 and $f^{-1}(K_1)$ is a subcontinuum of the other, and, hence, $f^{-1}(K_1)$ is a proper subset of K_1 . Let φ denote the least ordinal whose cardinality is greater than that of the continuum. There exists a sequence $K_1, K_2, ..., K_a, ...$ ($\alpha < \varphi$), such that (1) if $\alpha < \varphi$, K_{a+1} $=f^{-1}(K_a)$, and (2) if β is a limit ordinal $<\varphi$, K_{β} is the common part of the compact continua $K_1, K_2, ..., K_a, ...$ ($\alpha < \beta$). But, it can be shown by transfinite induction that, if $a < \beta < \varphi$, K_f is a proper subcontinuum of K_a , which is contrary to the fact that K_1 is of the power of the continuum. Thus, for each composant C of I, there exists a point p of C such that f(p) = p. Then, M, the set of all points p of I such that f(p) = p, intersects every composant of I. Therefore, since M is closed, it follows from Theorem 4 that, if C is a composant of I, $C \cdot M$ is infinite.

4. Closed and totally disconnected subsets of I. Mazurkiewicz [5] proved that I contains a perfect point set M such that no composant of I contains two points of M. Theorem 8 generalizes this result and answers a question asked the author (in conversation) by Professor B. J. Ball.

The statement that a point p of a subset K of a continuum M is continuumwise accessible from M-K means that there is a non-degenerate continuum that contains p and lies wholly in (M-K)+p, [2]. Cornette [2] was the first to show the existence of a compact metric continuum M containing a totally disconnected perfect point set K no point of which is continuumwise accessible from M-K. His examples were hereditarily decomposable chainable continua but his proofs suggested the proof of Theorem 10.

THEOREM 6. Suppose that, in a metric space, S is the set of all points and is a compact continuum. In order that S should be an irreducible continuum from the point x to the point y it is necessary and sufficient that, for every finite collection G of domains covering S, there should exist a positive number ε such that if D is an ε -chain from x to y, then each domain of the collection G intersects some link of D.

Proof. Suppose that M is a proper subcontinuum of S containing x and y, p is a point of S-M, δ is the distance from p to M, and G is a finite collection of domains, covering S, each having diameter less than $\delta/2$. For each positive number $\varepsilon < \delta/2$ there exists ([7], Ch. I, Th. 165) an ε -chain from x to y, each link of which intersects M and, hence, no link of which intersects a domain of the collection G which contains p.

Suppose, on the other hand, that G is a finite collection of domains covering S and, for each n, D_n is a 1/n-chain from x to y such that some domain of the collection G does not intersect any link of D_n . There is a domain g of G and an infinite subsequence D_{n_1}, D_{n_2}, \ldots of the sequence D_1, D_2, \ldots such that no link of any term of that subsequence intersects g. Then the limiting set of the sequence D_{n_1}, D_{n_2}, \ldots of point sets is a continuum containing x and y, [4], but no point of g.

THEOREM 7. Suppose that K is a finite subset of I such that no composant of I contains two points of K, and G is a finite collection of domains covering I. Then there exists a positive number ε such that, if D is an ε -chain from one point of K to another, then every domain of G intersects some link of D.

Theorem 8. Suppose that M is an inner limiting subset of I (i. e. M is a G_{δ} -set) which intersects uncountably many composants of I. Then M contains a perfect point set S such that no proper subcontinuum of I contains two points of C, but no such point set C intersects every composant of I.

Proof. For each composant K of I which intersects M, denote by p_K a particular point of $M \cdot K$. Let M' denote the set of all points p_K for all composants K of I which intersect M, and let M'' denote the set

to which x belongs if, and only if, x is a point of M' such that every domain which contains x contains uncountably many points of M'. Every domain which contains a point of M'' contains uncountably many points of M''. Let E_1, E_2, \ldots denote a sequence of domains whose common part is M. Let a and b denote two points of M'' and let Z_1 denote the set whose only elements are a and b. Let G_1 denote a finite collection of domains, each of diameter less than 1, covering I and containing two domains g_a and g_b , containing a and b respectively, whose closures are mutually exclusive subsets of E_1 . Let H_1 denote the collection whose only elements are g_a and g_b . Denote by ε_1 a positive number less than 1/2 such that if D is an ε_1 -chain from a to b, then every domain of G_1 intersects some link of D. Let Z_1 , $Z_2,\ldots;~G_1,G_2,\ldots;~H_1,~H_2,\ldots;~~{
m and}~~arepsilon_1,arepsilon_2,\ldots~{
m denote}~{
m sequences}~{
m such}$ that, for each n, (1) Z_{n+1} is a set of only 2^{n+1} points of M'' such that each domain h of H_n contains only two of them, each at a distance less than $\varepsilon_n/3$ from the point of $h\cdot Z_n$; (2) G_{n+1} is a finite collection of domains covering I, each having diameter less than ε_n , such that the closure of each domain of G_{n+1} which contains a point of Z_{n+1} is a subset of E_{n+1} and of some domain of H_n and intersects the closure of no other domain of G_{n+1} intersecting Z_{n+1} ; (3) H_{n+1} is the collection consisting only of the 2^{n+1} domains of G_{n+1} which intersect Z_{n+1} ; and (4) ε_{n+1} is a positive number less than 1/(n+2) such that if D is an ε_{n+1} -chain from one point of Z_{n+1} to another, then every domain of G_{n+1} intersects some link of D.

Denote by C the common part of the point sets H_1^*, H_2^*, \dots Evidently, C is a totally disconnected perfect point set and is a subset of M. Suppose that x and y are two points of C, T is a proper subcontinuum of I containing x and y, and p is a point of I-T. Let n>1 denote an integer such that the distance from p to T is greater than $\varepsilon_{n-1} + 2\varepsilon_n$ and the distance from x to y is greater than ε_{n-1} . There exist an ε_n -chain Dfrom x to y, each link of which intersects T and points x' and y' of Z_n such that x belongs to the domain of H_n containing x' and y belongs to the domain of H_n containing y'. Let R_x denote the set of all points of I at a distance less than $\varepsilon_n/3$ from x' and let R_y denote the set of all points of I at a distance less than $\varepsilon_n/3$ from y'. Then there exists a chain D' whose first link is R_x , whose last link is R_y , and each of whose links distinct from R_x and R_y is either a link of D or a domain of H_{n+1} containing either x or y. But D' is an ε_n -chain from x' to y' no one of whose links intersects a domain of G_n which contains p, contrary to the stipulation (4) above. Therefore, no proper subcontinuum of I contains two points of C. That no such point set C intersects every composant of I follows from Theorem 4.

COROLLARY. If M is an inner limiting subset of I, then the collection of all composants of I with intersect M is either countable or of the power of the continuum (cf. $\lceil 5 \rceil$).

Theorem 9. If M is an inner limiting subset of I which contains a composant of I, then the collection of all composants of I which lie wholly in M is of the power of the continuum.

Proof. Let G be the collection of all composants of I which lie wholly in M. Evidently $CP(I-M)=I-G^*$, hence, by Theorem 2, G^* is an inner limiting set, and, by the corollary to Theorem 8, G is either countable or of the power of the continuum. Suppose that G is countable; g_1, g_2, \ldots are the elements of G; and, for each n, p_n is a point of g_n . Now, I-M is the sum of countably many closed point sets K_1, K_2, \ldots But then $(p_1+p_2+\ldots)+K_1+K_2+\ldots$ intersects every composant of I and is the sum of countably many closed point sets no one of which intersects every composant of I, contrary to Theorem 3. Hence, G is of the power of the continuum.

Theorem 10. If I is hereditarily indecomposable, there exists a totally disconnected perfect point set C such that no point of C is continuum-wise accessible from I-C.

Proof. Denote by K_1, K_2, \ldots a monotonic sequence of closed subsets of I such that, for each n, K_n has only 2^n components, each having diameter less than 1/n, and each containing two components of K_{n+1} . Evidently, the common part C of the point sets of that sequence is a totally disconnected perfect point set. Suppose that M is a non-degenerate subcontinuum of I containing only one point p of C, ε is the diameter of M, n is a positive integer greater than $1/\varepsilon$, and k is the component of K_n containing p. Then M+k is an indecomposable continuum and k has diameter less than that of M. Then k is a subset of M. But k contains uncountably many points of C.

REFERENCES

- [1] R. H. Bing, *The pseudo-arc*, Summary of Lectures and Seminars, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955, p. 72-75.
- [2] J. L. Cornette, Continuumwise accessibility, University of Texas dissertation, 1962.
- [3] O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proceedings of the American Mathematical Society 2 (1951), p. 173-174.
- [4] S. Janiszewski, Sur les continus irréductibles entre deux points, Journal de l'Ecole Polytechnique, 2^e série, 16 (1912), p. 79-170.
- [5] S. Mazurkiewicz, Sur les continus indécomposables, Fundamenta Mathematicae 10 (1927), p. 305-310.

- [6] E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Transactions of the American Mathematical Society 63 (1948), p. 581-594.
- [7] R. L. Moore, Foundations of point set theory, American Mathematical Society Colloquium Publications 13, revised edition, 1962.

AUBURN UNIVERSITY

Reçu par la Rédaction le 9. 12. 1963