VOL. XIII

1964

FASC. 1

SOME REMARKS ON MONOTHETIC GROUPS

BY

S. ROLEWICZ (WARSAW)

A topological group G is called *monothetic* if there is an element x such that the group H_x generated by x (i. e. the set of all elements of the type x^n , $n=0,\pm 1,\pm 2,\ldots$) is dense in G. The idea of monothetic groups was introduced by van Dantzig [1], [2]. These groups have been also investigated by Eckman [3] and by Halmos and Samelson [4], who proved independently, among others, that every separable connected Abelian compact group is monothetic.

If a monothetic group G is locally compact, then it is either discrete or compact (see [5], lemma 1, p. 270).

The following question arises: Is this alternative true under weaker assumptions? Does it hold in the case when G is a complete metric monothetic group?

The answer is negative, as it is shown by the following

Theorem. There exists a monothetic complete metric Abelian group G, which is neither discrete nor compact.

Proof. Let G be the set of sequences of complex numbers $z = \{z_n\}$, where $|z_n| = 1$ and $z_n \to 1$. The group operation is defined as multiplication by coordinates, i. e. the product xy of $x = \{x_n\}$ and $y = \{y_n\}$ is the element $\{x_ny_n\}$.

The distance of two elements $x=\{x_n\}$ and $y=\{y_n\}$ is defined by $\varrho(x,y)=\max|x_n-y_n|$.

It is easily seen that the group G is complete and non-compact. For any $y=\{y_n\}$ denote by P_my the element $\{y_1,y_2,\ldots,y_m,1,1,\ldots\}$. Let $x=\{x_n\}=\{e^{i\lambda_n}\}$, where $\lambda_1,\lambda_2,\ldots$ are independent over rationals and subject to the condition

$$|\lambda_n| < \frac{1}{2^n k_{n-1}}$$
 $(n = 2, 3, ...),$

where k_n is the smallest integer k for which the inequality

$$\varrho \left(\left(P_{n}x\right) ^{j},P_{n}y\right) \leqslant \frac{1}{2^{n}}$$

can be satisfied for every $y \in G$ and a suitable $j \leq k$. The existence of such k's follows from Kronecker's approximation theorem. Of course we have $k_n \leq k_{n-1}$.

Let y be an arbitrary element of the group G and ε an arbitrary positive number. It trivially follows from the definition of the group G that there is a number n_0 such that for all $n > n_0$ we have $\varrho(y, P_n y) < \varepsilon/3$. We choose an $n > n_0$ so as to have $1/2^n < \varepsilon/3$. By the manner the sequence $\{x_n\}$ was chosen, there is an integer j $(0 \le j \le k_n)$ such that (1) holds. For m > n one has

$$j\left|\lambda_{m}
ight|\geqslantrac{j}{2^{n}k_{n}}\geqslantrac{1}{2^{n}}.$$

Hence $\varrho(x^i, (P_n x)^i) < \varepsilon/3$. Therefore

$$\varrho(x^{j}, y) \leqslant \varrho(x^{j}, (P_{n}x)^{j}) + \varrho((P_{n}x)^{j}, P_{n}y) + \varrho(P_{n}y, y) < \varepsilon$$

and, since y was an arbitrary element of G, the group G is monothetic. This completes the proof.

The author would like to express his thanks to Prof. S. Hartman for his keen remarks, which helped to the preparation of this note.

REFERENCES

- [1] D. van Dantzig, Über topologisch homogene Kontinua, Fundamenta Mathematicae 15 (1930), p. 102-125.
- [2] Zur topologischen Algebra I, Mathematische Annalen 107 (1932), p. 587-626.
- [3] B. Eckman, Über monothetische Gruppen, Commentarii Mathematici Helvetici 16 (1943), p. 249-263.
- [4] P. R. Halmos and H. Samelson, On monothetic groups, Proceedings of the National Academy of Science, USA, 28 (1942), p. 254-258.
 - [5] А. С. Понтрягин, Непрерывные группы, издание второе, Москва 1954.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 12.9.1963