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ON PERIODIC EXTENSIONS OF FUNCTIONS

BY

J. 8. LIPINSKI (LODZ)

In this note I consider extensions of real functions defined on some
unbounded set to continuous periodic functions. The results I present
complete in a sense an answer (see [3]) I have given to a problem of Mar-
czewski concerning such extensions.

As it is seen, an extension of a function is necessarily bounded and
continuous. Therefore the same properties must be displayed by the
functions to be extended. In the note [3] I have proved the existence
of a sequence of points such that every bounded function defined on
the set of terms of this sequence can be extended to a continuous perio-
dic function. As the greatest lower bound of the set of distances between
the terms of the sequence in question was positive, and, consequently,
every function defined on the terms of this sequence was uniformly
continuous, it was not necessary to assume explicitly the uniform con-
tinuity of the functions to be extend. Now I am going to prove a stronger
theorem: there exists a sequence of intervals such that every uniformly
continuous bounded function defined on the union of these intervals can
be extended to a continuous periodic function. This result is in fact stronger
than that presented in [3], because the left-hand end of the intervals
we shall consider form sequences of the kind considered in [3]. An ana-
logous result for almost periodic functions has been given by Hartman
and Ryll-Nardzewski[2]. Owing to a result [6] (compare also [3] and [4]),
they have proved the existence of an unbounded sequence of intervals
of constant length such that every uniformly continuous bounded funection
defined on the union of these intervals can be extended to a continuous
almost periodic function.

Thereafter 1 shall deal with the set of periods of all possible periodic
extensions of a given function, and I shall prove that it has the power
of the continuum under some conditions to be imposed on the sequence
of intervals in question. This completes a result of Hartman [1], who
has observed that such a set is always of measure zero.
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THEOREM 1. Let 8,>0, D 6, =d<+o0,a,>0, ) a,=a< +oo,
n=1

n=1]1

u>0,y=d+a+pu, a, >y,

1 Y + Ony
1 L > .
W a, - Oy

Then every wuniformly continuous bounded function ¢(x) defined on
the set

E = Ul Oy O+ Op)

can be extended to a continuous periodic function defined on the whole
real line.

Proof. Denote by m, and M, the minimum and maximum of ¢(z)
in the interval <(a,, a,-+a,> respectively, and put ¢, = 27 (m,+M,).
Denote by B the set of terms of the sequence {¢,}. Put Y = dnfe,, supe¢,)>.
The set Y\ B is open. If it is not empty, denote by £, its components
and associate with each component 2, = (w,, w,+ |£2,]) & positive num-
ber y, in such a way that ) y, = 37'-u. Let

:“'3_] = Zﬂn’
n=1

_Q.
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Fig. 1

where f, > 0. Associate with every number ¢, the number (see fig. 1)

(2) dy = Z (0i+ a;+ )+ 2 (i + ai+Bi) + 2 ri+ 271 Bn.
C;<Cp c,,;'=1’:fnr ; <Cp
<<n
The inequality ¢, < ¢, implies d,, < d,. From ¢, = ¢, and n< k
results d, < di. Let 0,(r) = a,/r. Let J, be a closed interval such that
0,(Jy) = <{d,,d,+ ;> (see fig. 2) and let L, = 0,(J,). We then have

Jy = <{a,(d,+ 61)41 a, 51_1>7 L, = <a2a11_1d1: azafl(dl'l‘ 4,).
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Inequality (1) implies |L,| = y+ d,. Thus interval L, contains an
interval of the form <k,y-+d,, k,y+d,+ d,>, where k, is an integer.
Let us fix %k, and denote by J, a closed interval such that 60,(J,) =
kyy+dyy kyy+dy+ 6,). Then 0,(J,) = Ly = 0,(J,). We then have J, o J,.
Suppose we have already defined for ¢ =1,2,...,n—1 the closed in-
tervals J; and integers k; such that J;_, o J a.nd 0;(J;) = <kiy+d;,
kiy+d;+ 6;>. Write J,_, = <',r"">. We then have ' = a,_,(kn_,¥
+dp_ 1+ 0u_1)"" and " = Gu_y(kn_1y+du_y)"". Let Ly ; = Op(Jn_y).
Then L, , = <@, apr'™"> = <ana;—1(kn-—1y+dn_1)) Antnty(Fn_1y
+dp_1+ 0p_1)>. We thus have |L,_,| = anan ' 0n_y. In view of (1) we
conclude

(3) | Ln_a| 2 y+ 0y.
Interval L,_, contains at least one interval of the form (k,y - d,,
kny+d,+ d,)>, where k, is an integer. Let us fix k, and denote by J, a

closed interval such that 0,(J,) = {k.y+dn, kny+d,+ d,>. In this
manner we define by induction a sequence {J,} of non-empty closed

intervals. Obviously J,_; o J,. Thus there exists a point rye () Jy.

N ]
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Because of the inequality a, >y and of the definition of J, we have
7o = 1. For every n we have

(4) 0 (7o) € lony+dny kpy~+ dp+ 65D
Write

+oco
r, = U <an+’£'ro}’, an+iroy+an>°

1=—o00

We will prove that for » # m we have
(5) oy By =0

In fact, let a, = l,ryy+7,, where I, is an integer and 0 < r, < Toy -
Consequently 0,(ry) = lL,y+7.,75"'. By (4) we have k, =1, and 7,r;"
e{dyp, d,,+ 3,>. Thus we see that the left-hand end of the interval {a,
— ¥y, @ —la7ryy+a,), which is a component of the set F,, belongs
to the interval (r,d,,r,(d,+ d,)> and, because of r, >1, the interval
p—1Uyyy @n—lny+ a,) is contained in the interval (ryd,, ro(d, + 6, + a,)>.
Because of (2) the last interval has no point in common with any interval
Tolmy To(dm—~+ O+ an)) for m #= n. For let m = n. Suppose we have
m < n. We ghall omit the discussion of the analogous case n < m. If
Cm = Cy, then in view of (2) we have

do—dm = D (0t st )+ 3hu— 3B

Ci:(,'
m<i<n

= Ot A+ %ﬁm"}“%ﬁn > 6m+ Oy

Therefore d,,+ 6,,+a, < d, and we conclude that the intervals
in question are disjoint. If ¢,, # ¢,, then we have either ¢,, < ¢, or ¢,, < Gy
We will consider but the first case, the second being analogous. In the
first case we have

do—dp = Y (dita+pi)+

Cm<C{<Cp

+ D Gitat )+ D (Gitatf)t Y vit 3 4hm
c‘,Z?{‘ cz;;,{,‘ Cps<w;<Cp

> Om+ am+ %ﬁm > O+ ap.

Hence similarly as in the case ¢,, = ¢, we conclude that the inter-
vals in questions are disjoint. Consequently the intervals {ay— Uy, ay
—lay+ o,y and {am—1,70y, Gn—1lpryy+ o, are disjoint too, as they
are contained in disjoint intervals. The components of the set ¥, whose
left-hand ends belong to <0, 7,y > are thus pairwise disjoint. The remaining
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components result from those mentioned above through a translation
by an integral multiplicity of r,y. Therefore (5) holds true.

Let xela,+ kryy, an+kryy+oa,>, where k 1s an integer. Then
x—kryy ey, ay+ 0,> = . Define f(z)=¢(x—kryy). In this manner
we get a periodic function defined on (J F, with a period r,y, which

n=1
is an extension of ¢(x). We shall prove that it can be extended to a con-
tinuous periodic funection defined on the whole real line. To this end

it is sufficient to extend if from the set
D = LJI Ay —1,T0Yy Op— 1, 7oy + ) < L0, >

to a continuous function defined on <0, r,y> with f(0) = f(ryy).
Let x, be a limiting point of the set D. We shall prove that there
exists the limit lim f(x). We shall distinguish two cases: 1) xyeD),

T2

2) wye DND. In the first case there exists an % such that z,e<{az—lzr,y,
az— lzrey+ azy. The last interval is contained in

oy To(dit 05+ az)> < (Fo(dz—27"Br),s 1o+ 0+ az+27'65))

By (2), this last interval has no point in common with any interval
Tolmy To(dm~+ 0+ am)> for m % mn and, consequently, with intervals
(O — 0¥y Op— Un?oy + oy contained in them. We thus have

(6) D ~ (ro(dz—27"Bz), 7o(di+ 0+ an+27" 7))
= {az—larey, Gr—lGroy+azy = 8.

The function f(x) is continuous on S and the limit

lim f(x) = f(2,)

T—T
xeS u

exists. In the second case we define a function y(z) on D by putting
p(x) = €, for weda,— U7y, @n—1Unroy+ o) © {dy, dy+ 0p+ay>. As it is
implied by (2), »(«) is a non-decreasing function, thus it has at every
two-sided limiting point of D a left-hand and a right-hand limit, and
at every one-sided limiting point of D it has one of those limits. If at a li-
miting point there exist both limits, the left-hand one and the right-
-hand one, then they must be equal. For if we had y(x—0) < (24 0),
then the interval (yz(w—O), w(m—}—ﬂ)) would be a component of Y\ B,
say the interval (w,, w,+ |£2,]). As @ is both a left-hand and a right-hand
limiting point of D and x¢ D, there exist points r,d,, and r,d,- such
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that rody < o < rody, 7o(dn—dn) << y,7,. This yields a contradition
with definition (2), which implies

dv—dw = Y (itot+pf)+ N (ditatp)+

cp'<ei<ey”’ ci=cp’’
i<n”
+ ) Gt ait B+ 3w —38+ Y >
Ci=Cps e/ <wz<e,”’

i=n’

Therefore the function u(x) has a limit at every point of D\ D.
For (L‘eﬁ\D define

f(x) = Lim ().
531

We shall prove that f(x) is continuous at the points of D\ D. Let
xe D\D. Choose 7, >0 so that |[x—¢| < 5, implied [f(z)—y(f)| < /2.
Choose & >0 so that [t,—i,| < & implied |p(t,)—¢(t)| < £/2. This is
possible because of the uniform continuity of ¢(z) on the set E. Let us

oo
have a, < & for » > N. Such an N exists because the series Y «, is con-
N=1

N
vergent. Let 7, = ¢(x, U {(d;, d;+ ;). If |z—i| < #, and teD, then
i=1

there exists an 7 > N such that tedd;, d;+a;>. As i > N we have a; < &
and [p(#)—f() = le;—@(kirey+1)| < M;—m; < £/2. We thus have
[f(@) =) < 1f(@)—p@)|+ lp)—f(t) < & for |e—1] < min(n,,7,). As &
is arbitrarily small, this implies the continuity of the function f(x) at w,
if considered on the set D.

In view of the definition (2) of the numbers d, we have 0 < infD,
e(D,y)>37"e, and the more s0 o(D, r,y) >3"'e > 0. Put f(r,y) = f(0)
and if 0¢ D define f(0) arbitrarily. In this way the function f(z) is extended
over a closed set D v {ryy} v {0} = <0,r,»> with the preservation of
continuity. As it is known, it can now be extended continuously over
the whole interval <0, r,y>, which completes the proof.

THEOREM 2. Under assumptions of theorem 1 with inequality (1) re-
placed by the inequality

Qy, 2?+ dn 1
7 1o +
") et 27

every bounded function ¢(x) defined and wniformly continuous over E can
be ewtended in infinitely many ways to a continuous periodic functions
defined over the whole real line and the set of the periods of all its extensions
has the power of the continuum.
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Proof. If inequality (7) holds true, then so does inequality (1).
Thus in view of theorem 1 there exists an extension of ¢(x) to a con-
tinuous periodic function with a period equal to r,y, where 7, and y are
defined as in the proof of theorem 1. The number r, is not uniquely
defined. We shall prove that under assumption (7) the set of the num-
bers r, has the power of the continuum.

In fact, in the proof of theorem 1 inequality (3) was deduced from (1).
Now instead of (3) we deduce from (7) the inequality

[ Ln_| = 27+ On.

Therefore the interval L, , contains at least two intervals of
the form <(kny-+du, kny-+dn+ 0n)>, Where k, is an integer. With them
there are associated two different intervals J,. Denote them by J,,
and J,,. We have

J?‘L,D m Jﬂn_!l = 0-

When defining the intervals J, we have to choose one of the inter-
vals J,; by letting i =0 or ¢ =1. The number 7, is defined by a de-
creasing sequences of intervals J,; with ¢, = 0 or 1. There are as many
such sequences as there are sequences of 0’s and 1’s, s0 they form a set
of the power of the continunm. It is implied by (8) that different se-
quences {i,} determine different numbers r,. This completes the proof.
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