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SOME COMPACTIFICATIONS OF GENERAL ALGEBRARS

BY

JAN MYCIELSKI (WROCLAW)

In this paper I give several remarks connected with the theory of
algebraically compact Abelian groups and the theory of m-universal and
m-homogeneous or m-replete relational systems. No deep new results
are given in this paper but some easy facts mentioned here are perhaps
new, in particular a remark that an argument of Fuchs [5] can be much
generalized (Theorem 1) and a connection of m-repleteness with a kind
of compactness analogous to this of algebraically compact Abelian groups
(Theorem 3).

1. Terminology and notation. For any sets X and Y, Y* denotes
the set of all functions f: X —- Y. A theory of ordinal numbers will be
supposed in which a = {{: &< a}, e. g. n ={0,...,n—1} for n < w.

A = (A, {Fi}.ry is called an algebra (or general algebra) if A is a
non-empty set and F,: A’® —» A, where f(t) < w for every teT (if f(f) =
= 0 we mean that FyeA). The pair (T, f) is called the similarity type
of A. We write often ae?2l for acA.

The set of variables (unknowns) will be any indexed system z, (seS),
where § is any set, not necessarily denumerable. For any terms z and ¢
constructed with these variables and function symbols corresponding
to our similarity type the equation 7 — ¢ defines a relation R < A%,
which is the set of all systems a, (seS8) which satisfy it. By an equation
with constants in 2l we mean an equation v = @& in which some variables
are replaced by constant elements of A. This also defines a relation
R < A® (which does not depend on those variables which were replaced
by constants). We shall use the same letter R to denote an equation or
the corresponding relation. A system of equations, finite or infinite with
or without constants, is called solvable if the intersection of the corres-
ponding relations is non-empty, and a system belonging to this inter-
section is called a solution.

If A, (ueU) is a system of algebras of the same similarity type
(stmilar) and I is an msubsets of U, then P 2A,/I denotes the
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reduced direct product, i. e. the quotient of the direct product P A, by
well
a congruence = defined as follows:

a=beo{u:a(u) #b(u)}el.

An algebra 2 is called equationally m-compact (weakly equationally
m-compact), or shortly m-compact (weakly wm-compact), if each system
of m equations with constants in 2 (without constants), with any set S,
is solvable whenever any finite subsystem of this system is solvable.
2l is called compact (weakly) if it is m-compact (weakly) for any cardinal m.

R = (A, {R}ier> is called a relational system if A is a non-empty
set and R, = A"®, where r(t) is a positive integer for every teT. The
pair (T, r)> is called the similarity type of R. Sometimes R will denote A.
We denote by L§"" the set of all formulas of the corresponding first order
predicate calculus with equality with a system of variables z; (seS) (there-
fore L™ is the classical caleulus). For the notion of satisfaction of a
formula of L§"™ by a system a, (seS) of elements of A see [23]; for the
notions of elementary equivalence and elementary extensions of relational
systems see [23]; for the definition of reduced products of similar relational
systems see [4], an extensive theory of this operation is developed in [4],
[10], [11], [13], [156]. By a formula with constants in R we mean
any formula geL§ ™ in which some free variables are replaced by con-
stant elements of A. The satisfaction of a formula with constants by a
system a, (se8) is defined in the usual way, i.e. the remaining free va-
riables @, are replaced by the corresponding a,, ete.

A relational system R is called elementarily m-compact (weakly ele-
mentarily m-compact) if each set of m formulas with constants in R (with-
out constants), with any set S, is satisfiable by a system a, (seS) of
elements of R whenever all finite subsets of this set are satisfiable by such
systems.

2. Introduction. The above notions of compactness were studied
hitherto only for such Abelian groups, for which X,-compactness implies
compactness (Lo§ [16]). The theory of these Abelian groups was deve-
loped in [1], [2], [5], [9] and [16] (these groups are called there alge-
braically compact, consistently with an earlier terminology of I. Kaplan-
sky), e. g. every divisible Abelian group is such a group. Note that the
infinite cyclic group is not ¥,-compact as it is shown by the following
system of equations:

3wot+® =1, @ =2, & =2,

It was also proved by X.of [17] that for every regular cardinal number
m of 01- measure 0 there is a system of 2™ linear equations with integral
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coefficients and constants such that every subsystem of it having less
than m equations can be solved but the whole system can not. The ring
of integers has a still stranger property: there exists a system of ¥,
equations with constants every denumerable subsystem of which is sol-
vable but the whole system is not. Such is the system

mE,n(5zE+2)+y€,n(5zn+2) =1 (&,n< wy, §#1),

where z.,, y., and 2, are the unknowns. In fact, such an equation clearly
implies z; # 2, and hence the whole system is not solvable; but a denu-
merable subsystem involves only denumerably many 2’s, e. g. Rty Reyy v o es
then we take for z; such integers that the numbers 52;,+2 are differ-
ent primes (thus using the theorem of Dirichlet) and then obviously
adequate 2’s and y’s for the subsystem can be also found (}). It is not
known if the infinite cyclic group has this property, i. e. if such an un-
countable system of linear equations can be produced (P 482). Note
that no infinite field & is a compact ring. In fact, the system

(—a)y, =1, a@,

of ring-equations with constants in &, where the unknowns are z and all
Ya, has no solution, however, each finite subsystem of it clearly has.
Finally, let us mention the possibility of infinite systems of equations
such that no infinite subsystem of which is solvable, but all finite sub-
systems are. Such is the system

z=yr+mn, m=1,2,...,

of equations with constants in the ring of real numbers.

Given an equational class K of similar algebras (see e. g. [21] for
a definition of equational classes) and an algebra 2eK, the problem
arises if there exists a compactification BeK of U, i. e. an algebra B e K
which is compact and has a subalgebra isomorphic to 2.

The answer in general is negative even for weak compactification.
In fact, let % = ¢{0,1,2,...}, {F,, F;, F,}>, where

0 for x =y,

FOZO: F1=17 Fz(w7y)={1forw#y

and let K be the equational class with the similarity type <{0, 1, 2}, >,
where f(0) = f(1) = 0, f(2) = 2 and defined by a single equation
Hylw, 2) = Fy.

(') The above property of the ring of integers was discovered several years
ago by A. Ehrenfeucht, but his system of equations is not known to the author. Re-
lated set theoretical problems are treated by Erdés and Hajnal [3] (section 8).
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Clearly <K but 2 has no compactification in K, since every fi-
nite subsystem of a system of equations

Fo(@s)y @5)) = Fy (81,8268, 81 7 8y)

is solvable in 2 but an algebra BeK such that 2A = B and in which this
system is solvable must have at least the cardinality of §.

On the other hand, we will see (Theorem 5) that for every cardinal m
every algebra and, moreover, every relational system has an elementa-
rily m-compact elementary extension.

A topological algebra is an algebra <4, {F};,p> enriched by
a Hausdorff topology in the set A, such that all F;, are continuous; it
is called compact topological if this topology is compact. The following
proposition visibly follows from the Tihonov product theorem:

PRrROPOSITION 1. A compact topological algebra is a compact algebra.

This permits often to get a compactification of an algebra by con-
structing a topological compactification. It applies to all the finitely
approximable algebras, i. e. algebras 2 such that for every pair a, b of
its distinet elements there is a homomorphism % of 2 onto a finite
algebra with h(a) # h(b). Indeed, 2 is then imbeddable in the direct
product of all these finite algebras h(2l) which, by the theorem of Ti-
honov, has a compact topology. Many algebras are known to be finitely
approximable. It follows from the theorem of Birkhoff-Tarski [21] that
such are all free algebras in an equational class generated by a set of
finite algebras, e. g. free groups, solvable free groups, some free Abelian
rings etc. See also [6], [8], [18] and [19] for several other important
classes of algebras which are finitely approximable. Topological compacti-
fication can be also applied to every Abelian group. This method fails
for groups in general, since there are groups which are not imbeddable
into any compact topological group. Such is, as shown by H. Freuden-
thal (see [7]), e. g. the group of linear substitutions axz-+b with a, b ra-
tional and a # 0, for which the problem of existence of a compactifi-
cation in the class of all groups is open (P 483).

Nothing is known about compactness or m-compactness of non-
Abelian connected locally compact topological groups.

Let us still add the following easy general statements:

PROPOSITION 2. The direct product of m-compact (weakly m-compact)
similar algebras is an m-compact (weakly m-compact) algebra.

ProposITION 3. A retract of an m-compact algebra, . e. its image
by an endomorphism which is an identity on this image, is m-compact. If
h is an endomorphism of an algebra U, then A is weakly m-compact if
and only if h(2) is.
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In connection with this proposition the following unsolved problem
should be mentioned: Is every compact algebra a retract of a compact
topological algebra ? (P 484). For Abelian groups the answer is affirma-
tive as shown by Lo§ [16].

3. Theorems on equational compactness.

THEOREM 1. If U, (ueU) is a system of similar algebras, and I is
an W,-additive (%) ideal of subsets of U such that U is a union of R, mem-
bers of I, then the reduced dirvect product P 2U,/I has the following pro-

uell

perty: each system of W8, equations with constants in P U, /I such that all
ueU

tts subsystems having less than R, equations are solvable is solvable.
Proof (3). Let R, ({ < w,) be a system of equations with constants

in P A,/ with a system {z,},s of unknowns and let C be the set of all
uell

the constants appearing in this system. For every c¢<C we choose

a representant cec which is an element of the algebra P 2,, and
uell

¢(u) denotes the value of ¢ on the axis %,. Let R} denote an equation
with constants in 2, obtained from R. by replacing each ¢ occurring in
R: by the corresponding c¢(u). By the supposition of the theorem for
every 7 < o, there exists a solution {al},s of the system R, (&< 7).
Let alea] for any < w,, seS.

The following known property of equations in reduced products
holds (see [3]):

(1) 8/E\‘S'(abseas) = ({@}ses e R: © {u: {ag(u)}ses ¢ BE} €]).

Therefore, putting B = {u : {al(u)}ss¢R:}, Wo geb
(2) Blel  for any {<n.

By the assumption concerning I it is easy to produce a sequence
A:el (¢ < w,) such that

(3) Ay A, =0"Tor & #6&, UAd;=U and Bjc JA; for { <.

<y é<n
Given such a sequence, let us put
(4) ag(u) = ai" (u),

where &(u) is defined by wedgy,.

(?) i. e. every union of less than ¥, members of I is a member of I.
(®) This proof is an adaptation of an argument of Fuchs [5].
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By (1) the theorem will be proved if we show for each 5 < w, that
M, = {u: {as(u)}ss ¢ By} eI,
and we will show this by proving that M, = |J 4.. Indeed, by (4)

133/]
M, = {u: {45 (u)}oes ¢ BY)
and if u¢ ) 4¢, then &(u) > n and by (2) and (3) (the inclusion) we have

&<
a;™ (u)}ses e RY, i. ©. ug¢M,, q. e. d.
79 n
Remark. This theorem may be still generalized if each algebra

2, has a one-element subalgebra €,. Then, given any ideal J of subsets

of U, we denote by P, the subalgebra of P 2, consisting of all those
uer nelU

elements a for which
{u:a(u)¢Cyled.

Now the conclusion of our theorem is valid for any algebra of the

form C]Dt;")?,(u/l , where .J is the 8, ,-additive ideal generated by I (I is
ue

R,-additive). This generalization in the case of @ = 0 and 2, being Abe-
lian groups is the theorem of Fuchs [5].

THEOREM 2. Suppose that the assumptions of Theorem 1 on 2,
(weU), U and I are satisfied and, moreover, that

{u: U, is not Nz-compact (weakly Ny-compact)}el for every f < a.

Then P A, is R,-compact (weakly R,-compact).
ueU

Proof. By Theorem 1 it is enough to show that if R, (&< wy),

where f < a, is a system of equations with constants in P 2, /I (with-
uell

out constants) every finite subsystem of which is solvable, then this
system is solvable. Let R; denote an equation with (without) constants
in 2, defined by means of R. in the same way as in the proof of Theo-
rem 1. Let

B = {u : there exists a finite sequence &,,..., &, < w; such that
the system R, ..., RY is not solvable}.

It would be enough to show that Bel, since then the system RY
(& < wg) is solvable whenever

w¢B < {u:?, is not Ny-compact (weakly N;-compact)},

which shows that the system R, (&< w;) is solvable.
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To prove Bel let us remark that

(o0]

B=J U {u:the system Rf,..., Ry is not solvable}

£
n=1 §,....5p<o0g "
and, since each system R, ..., R, is solvable,

{u:the system Rf,..., R is not solvable}el.

Hence, since I is ¥,-additive, we get Bel, q. e. d.

By a repeated application of the operation 2A“»/I, where I =
={X:X c w,, X <§,}, and by Theorems 1 and 2 we can prove for
any n < o that any algebra 2 has an &,-compactification belonging
to the equational class generated by 2. But if the maximal ideals are
used, then much better results can be obtained as we will see in the next
section.

4. Theorems on elementary compactness. Let us recall a notion
quite analogous to elementary m-compactness, which was introduced
by Keisler in [12]: a relational system R is called n-replete if each system
of less than n formulas with constants in R each of them involving only
one and the same free variable is satisfiable whenever each finite sub-
system of this system is satisfiable.

THEOREM 3. A system is n-replete if and only if it is elementarily
m-compact for every m < n.

Proof. It is quite obvious that elementary m-compactness for
every m < n implies n-repleteness. The converse implication follows
from Theorem A.2 of [10](%). In fact, an equivalent of n-repleteness
given in A.2 (condition (i)) easily implies m-compactness for every m << n.

On account of Theorem 3 we can translate several results announced
in [10] and [12] into our terminology:

THEOREM 4. Let R, (welU) be a system of similar relational systems
and I a prime ideal of subsets of U such that U is a union of R, members
of 1(%). Then the reduced product P R/ is elementarily No,-compact (°).

ueU
TaEOREM 5. If RN = (A, {R}r> is a system with R, <A < 2™
and T < 2", then R has an elementary extension &, which is elementarily

m-compact and S = 2% (7).

(4) The proof has not yet been published.

(5) i. e. I is not Np-additive. If [7 is of 01-measure 0, as all but extremely large
cardinals are — see [22], then every prime non principal ideal of subsets of U satis-
fies this supposition.

(6) A direct proof of Theorem 4 would be quite analogous to the proof of Theo-
rem 1. A still more general result (on the assumption of some cases of the generalized
continuum hypothesis) was announced in [10] (Theorem A.4).

() This is a form of Theorem 1 announced in [12].
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THEOREM 6. If 8., = 2% and 8, < R < 8, then R has an elemen-
tary extension &, which is elementarily N,-compact and G = N1 (8).
_ THEOREM 7. If R = <A, {Rlr> is a system with xogﬁ: and
T <R, and R,,; = 2%, then there s, up to an isomorphism, exactly one
elementarily R,-compact system S elementarily equivalent to R with & =
= sa+1 (9) .

More informations on repleteness, the strictly related notions of
universality and homogeneity and thus on elementary compactness

of various relational systems and algebras are given in [10], [12], [13]
and [20].

(8) This is a form of Corollary A.5 (a) announced in [10].
(?) This is a form of a theorem of Vaught, see [10], Theorem A.l, or [20], where
analogous results are proved (Theorems 3.4, 3.5 and 3.6).
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