ArticleOriginal scientific text

Title

The Weyl correspondence as a functional calculus

Authors 1

Affiliations

  1. Department of Mathematics, New Mexico State University, Las Cruces, NM 88003-8001, U.S.A.

Abstract

The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.

Bibliography

  1. J. Alvarez, Existence of a functional calculus on certain algebras of pseudo-differential operators, J. Unión Mat. Argentina 29 (1979), 55-76.
  2. J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, I, in: Proceedings of the Seminar on Fourier Analysis held at El Escorial, June 17-23, 1979,edited by Miguel de Guzmán and Ireneo Peral, Asociación Matemática Española 1, 1979, 1-61.
  3. J. Alvarez, An algebra of Lp-bounded pseudo-differential operators, J. Math. Anal. Appl. 84 (1983) 268-282.
  4. J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, II, in: Studies in Applied Mathematics, edited by Victor Guillemin, Academic Press, New York, 1983, 27-72.
  5. J. Alvarez, Functional calculi for pseudo-differential operators, III, Studia Mathematica 95 (1989), 53-71.
  6. J. Alvarez and J. Hounie, Functions of pseudo-differential operators of non-positive order, J. Funct. Anal. 141 (1996), 45-59.
  7. R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267.
  8. A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
  9. R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York and London, 1972.
  10. G. B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, New Jersey, 1989.
  11. L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure and Appl. Math. 32 (1965), 269-305.
  12. L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. Pure Math. 10, Amer. Math. Soc., 1966, 138-183.
  13. J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure and Appl. Math. 18 (1979), 359-443.
  14. M. L. Lapidus, Quantification, calcul opérationnel de Feynman axiomatique et intégrale fonctionnelle généralisée, C. R. Acad. Sci. Paris Sér. I 308 (1989), 133-138.
  15. A. Mc Intosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 420-439.
  16. V. Nazaikinskii, V. Shatalov and B. Sternin, Methods of non-commutative analysis, de Gruyter Stud. Math. 22, de Gruyter, Berlin, 1996.
  17. E. Nelson, Operator differential equations, Lecture Notes, Princeton University (1964-1965).
  18. E. Nelson, Operants: A functional calculus for non-commuting operators, in: Functional analysis and related topics, edited by Felix E. Browder, Springer-Verlag, New York, 1970, 172-187.
  19. J. C. T. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Physics 7 (1966) 66-76.
  20. M. Riesz and B. Szőkefalvi-Nagy, Functional analysis, Ungar, New York, 1955.
  21. Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148.
  22. M. E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98.
  23. H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1928.
Pages:
79-88
Main language of publication
English
Published
2000
Exact and natural sciences