ArticleOriginal scientific text
Title
The Weyl correspondence as a functional calculus
Authors 1
Affiliations
- Department of Mathematics, New Mexico State University, Las Cruces, NM 88003-8001, U.S.A.
Abstract
The aim of this paper is to use an abstract realization of the Weyl correspondence to define functions of pseudo-differential operators. We consider operators that form a self-adjoint Banach algebra. We construct on this algebra a functional calculus with respect to functions which are defined on the Euclidean space and have a finite number of derivatives.
Bibliography
- J. Alvarez, Existence of a functional calculus on certain algebras of pseudo-differential operators, J. Unión Mat. Argentina 29 (1979), 55-76.
- J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, I, in: Proceedings of the Seminar on Fourier Analysis held at El Escorial, June 17-23, 1979,edited by Miguel de Guzmán and Ireneo Peral, Asociación Matemática Española 1, 1979, 1-61.
- J. Alvarez, An algebra of
-bounded pseudo-differential operators, J. Math. Anal. Appl. 84 (1983) 268-282. - J. Alvarez and A. P. Calderón, Functional calculi for pseudo-differential operators, II, in: Studies in Applied Mathematics, edited by Victor Guillemin, Academic Press, New York, 1983, 27-72.
- J. Alvarez, Functional calculi for pseudo-differential operators, III, Studia Mathematica 95 (1989), 53-71.
- J. Alvarez and J. Hounie, Functions of pseudo-differential operators of non-positive order, J. Funct. Anal. 141 (1996), 45-59.
- R. F. V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267.
- A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901-921.
- R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York and London, 1972.
- G. B. Folland, Harmonic analysis in phase space, Princeton University Press, Princeton, New Jersey, 1989.
- L. Hörmander, The Weyl calculus of pseudo-differential operators, Comm. Pure and Appl. Math. 32 (1965), 269-305.
- L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Proc. Symp. Pure Math. 10, Amer. Math. Soc., 1966, 138-183.
- J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure and Appl. Math. 18 (1979), 359-443.
- M. L. Lapidus, Quantification, calcul opérationnel de Feynman axiomatique et intégrale fonctionnelle généralisée, C. R. Acad. Sci. Paris Sér. I 308 (1989), 133-138.
- A. Mc Intosh and A. Pryde, A functional calculus for several commuting operators, Indiana Univ. Math. J. 36 (1987), 420-439.
- V. Nazaikinskii, V. Shatalov and B. Sternin, Methods of non-commutative analysis, de Gruyter Stud. Math. 22, de Gruyter, Berlin, 1996.
- E. Nelson, Operator differential equations, Lecture Notes, Princeton University (1964-1965).
- E. Nelson, Operants: A functional calculus for non-commuting operators, in: Functional analysis and related topics, edited by Felix E. Browder, Springer-Verlag, New York, 1970, 172-187.
- J. C. T. Pool, Mathematical aspects of the Weyl correspondence, J. Math. Physics 7 (1966) 66-76.
- M. Riesz and B. Szőkefalvi-Nagy, Functional analysis, Ungar, New York, 1955.
- Z. Słodkowski and W. Żelazko, On joint spectra of commuting families of operators, Studia Math. 50 (1974), 127-148.
- M. E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98.
- H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel, Leipzig, 1928.