ArticleOriginal scientific text

Title

An algebraic derivative associated to the operator Dδ

Authors 1, 1, 1

Affiliations

  1. Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna (Tenerife), Canary Islands, Spain

Abstract

In this paper we get an algebraic derivative relative to the convolution (fg)(t)=0tif(t-ψ)g(ψ)dψ associated to the operator Dδ, which is used, together with the corresponding operational calculus, to solve an integral-differential equation. Moreover we show a certain convolution property for the solution of that equation

Bibliography

  1. J. A. Alamo and J. Rodríguez, Cálculo operacional de Mikusiński para el operador de Riemann-Liouville y su generalizado, Rev. Acad. Canar. Cienc. 1 (1993), 31-40.
  2. W. Kierat and K. Skórnik, A remark on solutions of the Laguerre differential equation, Integral Transforms and Special Functions 1 (1993), 315-316.
  3. J. Mikusiński, Operational Calculus, Pergamon, Oxford, 1959.
  4. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, 1984.
  5. Y K. Yosida, Operational Calculus. A Theory of Hyperfunctions, Springer-Verlag, New York, 1984.
Pages:
71-78
Main language of publication
English
Published
2000
Exact and natural sciences