PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 53 | 1 | 177-189
Tytuł artykułu

Non-Leibniz algebras with logarithms do not have the trigonometric identity

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. $[C(x)]^2 + [S(x)]^2 = e$ whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that the Trigonometric Identity is satisfied? We shall show that in non-Leibniz algebras with logarithms the Trigonometric Identity does not exist. This means that the above question has a negative answer, i.e. the Leibniz condition in algebras with logarithms is a necessary and sufficient condition for the Trigonometric Identity to hold.
Rocznik
Tom
53
Numer
1
Strony
177-189
Opis fizyczny
Daty
wydano
2000
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences , Śniadeckich 8, 00-950 Warszawa, Poland
Bibliografia
  • DB[1] A. di Bucchianico, Banach algebras, logarithms and polynomials of convolution type, J. Math. Anal. Appl. 156 (1991), 253-273.
  • PR[1] D. Przeworska-Rolewicz, Algebraic Analysis, PWN-Polish Scientific Publishers and D. Reidel, Warszawa-Dordrecht, 1988.
  • PR[2] D. Przeworska-Rolewicz, Consequences of the Leibniz condition, in: Different Aspects of Differentiability. Proc. Conf. Warsaw, September 1993. Ed. D. Przeworska-Rolewicz. Dissertationes Math. 340 (1995), 289-300.
  • PR[3] D. Przeworska-Rolewicz, Logarithms and Antilogarithms. An Algebraic Analysis Approach, With Appendix by Z. Binderman. Kluwer Academic Publishers, Dordrecht, 1998.
  • PR[4] D. Przeworska-Rolewicz, Linear combinations of right invertible operators in commutative algebras with logarithms, Demonstratio Math. 31 (1998), 887-898.
  • PR[5] D. Przeworska-Rolewicz, Postmodern logarithmo-technia, International Journal of Computers and Mathematics with Applications (to appear).
  • PR[6] D. Przeworska-Rolewicz, Some open questions in Algebraic Analysis, in: Unsolved Problems on Mathematics for the 21th Century - A Tribute to Kiyoshi Iséki's 80th Birthday, IOS Press, Amsterdam (to appear).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv53z1p177bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.