ArticleOriginal scientific text

Title

Convolution structure of (generalized) hermite transforms

Authors 1

Affiliations

  1. Fakultät für Mathematik, Friedrich-Schiller-Universität, D-07740 Jena, Germany

Bibliography

  1. T. S. Chihara, Generalized Hermite polynomials, Ph. D. Thesis Purdue Univ. (1955).
  2. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon & Breach, New York, 1978.
  3. L. Debnath, Some operational properties of Hermite transform, Math. Vesnik 5 (20) (1968), 29-36.
  4. I. H. Dimovski and S. L. Kalla, Explicit convolution for Hermite transform, Math. Japonica 33 (1988), 345-351.
  5. H.-J. Glaeske, On a convolution structure of a generalized Hermite transformation, Serdica 9 (1983), 223-229.
  6. H.-J. Glaeske, Die Faltungsstruktur Sturm-Liouvillescher Integraltransformationen, in: Mathematical Structures-Computational Mathematics - Mathematical Modelling, vol. 2, Publishing House of the Bulgarian Academy of Sciences, Sofia, 1984, 177-183.
  7. H.-J. Glaeske and M. Saigo, On a hybrid Laguerre-Fourier transform, Integral Transform Spec. Funct., to appear.
  8. E. Görlich and C. Markett, A convolution structure for Laguerre series, Indag. Math. (N.S.) 44 (1982), 161-171.
  9. A. M. Krall, Spectral analysis for the generalized Hermite polynomials, Trans. Amer. Math. Soc. 344 (1994), 155-172.
  10. C. Markett, Mean Cesàro summability of Laguerre expansions and norm estimates with shifted parameter, Anal. Math. 8 (1982), 19-37.
  11. C. Markett, The product formula and convolution structure associated with the generalized Hermite polynomials, J. Approx. Theory 73 (1993), 199-217.
  12. G. Szegö, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence R.I., 1975.
  13. G. W. Watson, Another note in Laguerre polynomials, J. London Math. Soc. 14 (1939), 19-22.
Pages:
113-120
Main language of publication
English
Published
2000
Exact and natural sciences