ArticleOriginal scientific text

Title

Mean-periodic operational calculi

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Bulgarian Academy of Sciences, Sofia 1090, Bulgaria
  2. Institute of Mathematics, Polish Academy of Sciences, Katowice Branch, Bankowa 14, 40-007 Katowice, Poland

Abstract

Elements of operational calculi for mean-periodic functions with respect to a given linear functional in the space of continuous functions are developed. Application for explicit determining of such solutions of linear ordinary differential equations with constant coefficients is given.

Bibliography

  1. J. Delsarte, Les fonctions moyenne-périodiques, J. Math. Pures Appl. (9) 14 (1935), 403-453.
  2. L. Schwartz, Théorie générale des fonctions moyenne-périodiques, Ann. of Math. (2) 48 (1947), 857-929.
  3. L. Ehrenpreis, Mean-periodic functions, varieties whose annihilator ideals are principal, Amer. J. Math. 77 (1955), 293-328 and 731-733.
  4. C. A. Berenstein and B. A. Taylor, Mean-periodic functions, Internat. J. Math. Math. Sci. 3 (1980), 199-235.
  5. J. Delsarte, Fonctions moyenne-périodiques sur un groupe abstrait, Ann. Soc. Sci. Bruxelles Sér. I Sci. Math. Phys. 57 (1937), No 1, 6-15; reprinted in his Oeuvres, Vol. I, 381-390.
  6. A. F. Leont'ev, Funkcii periodicheskie v srednem, Trudy letnei matematicheskoi shkoly, Konf. Teorii Funkcii, Kiev, 1966 (in Russian).
  7. J. Mikusiński, Operational Calculus, PWN-Pergamon Press, Vol. I, 1983.
  8. I. H. Dimovski, Convolutional Calculus, Kluwer, Dordrecht, 1990.
  9. A. F. Leont'ev, Exponential Series, Nauka, Moscow, 1976 (in Russian).
  10. S. I. Grozdev, A convolution approach to initial value problems for equations with right invertible operators, C. R. Acad. Bulgare Sci. 33(1980), 35-38.
  11. I. H. Dimovski, Nonlocal operational calculi, Proc. Steklov Inst. of Math. 203 (1994), 58-73 (in Russian).
Pages:
105-112
Main language of publication
English
Published
2000
Exact and natural sciences