PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 52 | 1 | 83-118
Tytuł artykułu

Some stability results for reactive Navier-Stokes-Poisson systems

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We review the main results concerning the global existence and the stability of solutions for some models of viscous compressible self-gravitating fluids used in classical astrophysics.
Słowa kluczowe
Rocznik
Tom
52
Numer
1
Strony
83-118
Opis fizyczny
Daty
wydano
2000
Twórcy
autor
  • Département de Physique Théorique et Appliquée, CEA Bruyères-le-Chatel, BP 12, F-91680, Bruyères-le-Chatel, France
Bibliografia
  • [1] R. Kippenhahn and A. Weingert, Stellar structure and evolution, Springer, 1994.
  • [2] S. Chandrasekhar, An introduction to the study of stellar structure, Dover, 1957.
  • [3] S. F. Shandarin and Ya. B. Zeldovitch, The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium, Reviews of Modern Physics 61 (1989), 185-220.
  • [4] G.-Q. Chen, Global solution to the compressible Navier-Stokes equations for a reacting mixture, SIAM J. Math. Anal. 23 (1992), 609-634
  • [5] E. Zadrzyńska and W. M. Zajączkowski, On global existence theorem for a free boundary problem for equations of a viscous compressible heat conducting fluid, Preprint 523 of Institute of Mathematics of Polish Academy of Sciences, 1994.
  • [6] G. Ströhmer and W. M. Zajączkowski, On stability of certain equilibrium solution for compressible barotropic viscous self-gravitating fluid motions bounded by a free surface, Preprint, (1998).
  • [7] P. Ledoux and T. Walraven, Variable stars, Handbuch der Physik 51, 353-604, Springer, 1958.
  • [8] J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer, 1989.
  • [9] P. Secchi, On the motion of gaseous stars in presence of radiation, Comm. Partial Diff. Equations 15 (1990), 185-204.
  • [10] S. N. Antonsev, A. V. Kazhikov and V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, North Holland, 1990.
  • [11] T. Makino and B. Perthame, Sur les solutions à symétrie sphériques de l'équation d' Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl. Math. 7 (1990), 165-170.
  • [12] B. Ducomet, Hydrodynamical models of gaseous stars, Reviews of Mathematical Physics 8 (1996), 957-1000.
  • [13] B. Ducomet, A remark about global existence for the Navier-Stokes-Poisson system, Applied Math. Letters 12 (1999), 31-37.
  • [14] B. Ducomet, A model of thermal dissipation for a one-dimensional viscous reactive and radiative gas, Math. Methods in Appl. Sci. 22 (1999), 1323-1349.
  • [15] B. Ducomet, Some asymptotics for a reactive Navier-Stokes-Poisson system, Math. Models and Methods in Appl. Sci. 9 (1999), 1039-1076.
  • [16] V. A. Solonnikov, Evolution free boundary problem for equations of motion of viscous compressible self-gravitating fluid, SAACM 3 (1993), 257-275
  • [17] Z. Xin, Blow-up of smooth solutions to the compressible Navier-Stokes equations with compact density, Preprint Courant Institute, 1996.
  • [18] H. Fujita-Yashima and R. Benabidallah, Spherically symmetric solutions of the Navier-Stokes equations for compressible isothermal flow with large discontinuous data, Indiana Univ. Math. J. 41 (1992), 1225-1301.
  • [19] D. Hoff, Equation à symétrie sphérique d'un gaz visqueux et calorifère avec la surface libre, Annali di Matematica Pura ed Applicata 168 (1995), 75-117.
  • [20] S. Jiang, Global spherically symmetric solutions to the equations of a viscous polytropic ideal gas in an exterior domain, Commun. Math. Phys. 178 (1996), 339-374
  • [21] B. Kawohl, Global existence of large solutions to initial boundary value problems for a viscous heat-conducting one-dimensional real gas, J. Differential Equations 58 (1985), 76-103.
  • [22] S. Jiang, On initial boundary value problems for a viscous heat-conducting one-dimensional real gas, J. Differential Equations 110 (1994), 157-181.
  • [23] S. Jiang, Remarks on the global existence in the dynamics of a viscous heat-conducting one-dimensional real gas, in: 'Qualitative aspects and applications of nonlinear evolution equations', H. Beirao da Veiga, T.-T. Li (eds.), World Scientific, 1994, 156-162.
  • [24] S. Jiang, On the asymptotic behavior of the motion of a viscous heat-conducting one-dimensional real gas, Math. Z. 216 (1994), 317-336.
  • [25] L. Hsiao and T. Luo, Large time behaviour of solutions for the outer pressure problem of a viscous heat-conducting one-dimensional real gas, Proc of the Royal Soc. of Edinburgh 126A (1996), 1277-1296,
  • [26] T. Luo, On the outer pressure problem of a viscous heat-conducting one-dimensional real gas, Acta Math. Appl. Sinica 13 (1997), 251-264.
  • [27] C. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoelasticity, Nonlinear Anal. Theory Methods Appl. 6 (1982), 435-454.
  • [28] M. Okada, Free boundary value problem for the equation of one-dimensional motion of viscous gas, Japan J. Appl. Math. 6 (1989), 161-177.
  • [29] T. Nagasawa, On the outer pressure problem of the one-dimensional polytropic ideal gas, Japan J. Appl. Math. 5 (1988), 53-85.
  • [30] B. Ducomet, On the stability of a stellar structure in one dimension II: The reactive case, Math. Modelling and Num. Anal. 31 (1997), 381-407.
  • [31] C. Dafermos, Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity, SIAM J. Math. Anal. 13 (1982), 397-408.
  • [32] H. Brézis, Analyse fonctionnelle, Masson, 1983.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv52z1p83bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.