PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 52 | 1 | 29-59
Tytuł artykułu

Nombres de Reynolds, stabilité et Navier-Stokes

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
FR
Abstrakty
Słowa kluczowe
Rocznik
Tom
52
Numer
1
Strony
29-59
Opis fizyczny
Daty
wydano
2000
Twórcy
  • UMR 7599 du CNRS, UFR de Mathématiques, Université de Paris VII, 2, Place Jussieu, 75251 Paris Cedex 05, France
Bibliografia
  • [1] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, I: Formal derivation, J. Stat. Physics 63 (1991), 323-344.
  • [2] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, II: Convergence proofs, Comm. Pure and Appl. Mathematics 46 (1993), 667-753.
  • [3] C. Bardos, F. Golse and D. Levermore, Acoustic and Stokes limits for the Boltzmann equation, C.R.A.S.P. 327 (1998), 323-328.
  • [4] C. Bardos, From molecules to turbulence. An overview of multiscale analysis in fluid dynamics, in: Advanced topics in theoretical fluid mechanics, J. Málec, J. Nečas and M. Rokyta (ed.), Pitman Research Notes in Mathematics Series 392, Longman, 1998.
  • [5] O. A. Barraza, Self-similar solutions in weak $L^p$ spaces of the Navier-Stokes equations, Rev. Mat. Iberoamericana 12 (1996), 411-439.
  • [6] J. Bergh and J. Löfstrom, Interpolation spaces, An Introduction, Springer-Verlag,1976.
  • [7] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Mathematica 114 (1995), 181-205.
  • [8] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ec. Norm. Sup. 4ème Série 14 (1981), 209-246.
  • [9] H. Brézis, Remarks on the preceding paper by M. Ben-Artzi, Arch. Rat. Mech. Anal. 128 (1994), 359-360.
  • [10] H. Brézis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304.
  • [11] C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$, Trans. Amer. Math. Soc. 318 (1990), 179-200.
  • [12] C. P. Calderón, Addendum to the paper: 'Existence of weak solutions for the Navier-Stokes equations with initial data in $L^p$', Trans. Amer. Math. Soc. 318 (1990), 201-207.
  • [13] C. P. Calderón, Initial values of solutions of the Navier-Stokes equations, Proc. Amer. Math. Soc. 117 (1993), 761-766.
  • [14] J. R. Cannon and G. H. Knightly, A note on the Cauchy problem for the Navier-Stokes equations, SIAM J. Appl. Math. 18 (1970), 641-644.
  • [15] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, 1995.
  • [16] M. Cannone, A generalisation of a theorem by Kato on Navier-Stokes equations, Revista Matematica Iberoamericana 13 (1997), 515-541.
  • [17] M. Cannone and Y. Meyer, Littlewood-Paley decomposition and the Navier-Stokes equations, Meth. and Appl. of Anal. 2 (1995), 307-319.
  • [18] M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique (Janvier 1994).
  • [19] M. Cannone and F. Planchon, Self-similar solutions of the Navier-Stokes equations in $ℝ^3$, Comm. Part. Diff. Eq. 21 (1996), 179-193.
  • [20] M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions of the incompressible Navier-Stokes equations in $ℝ^3$, Revista Matematica Iberoamericana 16 (2000), 1-16.
  • [21] M. Cannone and F. Planchon, On the non stationary Navier-Stokes equations with an external force, Adv. in Diff. Eq. 4 (1999), 697-730.
  • [22] M. Cannone, F. Planchon and M. Schonbek, Navier-Stokes equations in the half space, Comm. P.D.E. (à paraître, 1999).
  • [23] M. Cannone and F. Planchon, Fonctions de Lyapunof pour les équations de Navier-Stokes, à paraître dans séminaire X-EDP, Ecole Polytechnique (1999-2000).
  • [24] A. L. Cauchy, Sur les équations qui expriment les conditions d'équilibre ou les lois du mouvement des fluides, dans 'Exercices de Mathématiques' Œ uvres complètes, II Série, Tome VIII (1890), Gauthier-Villars, Paris, (1828), 158-179.
  • [25] T. Cazenave and F. Weissler, Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations, Math. Zeit. 228 (1998), 83-120.
  • [26] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences 104, Springer-Verlag, 1994.
  • [27] C. Cercignani, Ludwig Boltzmann: the man who trusted atoms, Oxford University Press, 1998.
  • [28] J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20-28.
  • [29] J. Y. Chemin, About Navier-Stokes system, Publ. Lab. Anal. Num. (Univ. Paris 6) R 96023, (1996) 1-43.
  • [30] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, Exposé n. XXIV, Séminaire X-EDP, Ecole Polytechnique, (1996-1997).
  • [31] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999), 27-50.
  • [32] P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988.
  • [33] J. S. Darrozes et C. François, Mécanique des Fluides Incompressibles, Springer Verlag, Berlin, 1982.
  • [34] N. Depauw, Solutions peu régulières des équations d'Euler et Navier-Stokes incompressibles sur un domaine à bord, Thèse de Doctorat de l'Université de Paris Nord, 1998.
  • [35] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, 1981.
  • [36] R. Dugas, Histoire de la mécanique, Paris, Editions Dunod, Neuchatel Editions du Griffon, 1950.
  • [37] E. B. Fabes, B. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in $L^p$, Arch. Rat. Mech. Anal. 45 (1972), 222-240.
  • [38] E. B. Fabes, J. E. Lewis and N. M. Rivière, Boundary value problems for the Navier-Stokes equations, Am. Jour. of Math. 99 (1977), 601-625.
  • [39] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248.
  • [40] C. Foias and R. Temam, Self-similar universal homogeneous statistical solutions of the Navier-Stokes equations, Comm. Math. Phys. 90 (1983) 187-20.
  • [41] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, Monograph in the CBM-AMS 79, 1991.
  • [42] G. Furioli, Applications de l'analyse harmonique réelle à l'étude des équations de Navier-Stokes et de Schrödinger non linéaires, Thèse de Doctorat de l'Université d'Orsay, 1999.
  • [43] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l'unicité dans $L^3(ℝ^3)$ des solutions mild des équations de Navier-Stokes, C. R. Acad. Sci. Paris 325 (1997), 1253-1256.
  • [44] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Unicité dans $L^3(ℝ^3)$ et d'autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana (à paraître, 2000).
  • [45] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269-315.
  • [46] A. Georgescu, Hydrodynamic stability theory, Martinus Nijhoff Publishers, Kluwer 1985.
  • [47] Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Kyoto Univ. 19 (1983), 887-910.
  • [48] Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces, Arch. Mech. Rat. Anal. 89 (1985), 251-265.
  • [49] Y. Giga, Solutions for semi linear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system J. Diff. Equat. 61 (1986), 186-212.
  • [50] Y. Giga, Regularity criteria for weak solutions of the Navier-Stokes system, Proceedings of Symposia in Pure Mathematics 45 (1986), 449-453.
  • [51] Y. Giga, Review of the paper by H. Brezis, 'Remarks on the preceding paper by M. Ben-Artzi', Math. Reviews 96h:35149, (August 1996) [see, for the revised form, at the address http://klymene.mpim-bonn.mpg.de:80/msnprhtml/review_search.html].
  • [52] Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quaderni di Matematica (à paraître, 2000).
  • [53] Y. Giga and T. Miyakawa, Solutions in $L^r$ of the Navier-Stokes initial value problem, Arch. Mech. Rat. Anal. 89 (1985), 267-281.
  • [54] Y. Giga and T. Miyakawa, Navier-Stokes flows in $ℝ^3$ with measures as initial vorticity and the Morrey spaces, Comm. PDE 14 (1989), 577-618.
  • [55] G. Grubb, Initial value problems for the Navier-Stokes equations with Neumann conditions, in: 'The Navier-Stokes equations II', J. G. Heywood, K. Masuda, R. Rautmann and S. A. Solonnikov (ed.), Proc. Conf. Oberwolfach 1991, Lecture Notes in Mathematics 1530, Springer, Berlin, 1992, 262-283.
  • [56] A. Haraux and F. Weissler, Non-uniqueness for a semi-linear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189.
  • [57] J. G. Heywood and R Rannacher, An analysis of stability concepts for the Navier-Stokes equations, J. Reine Angew. Math. 372 (1986), 1-33.
  • [58] J. E. Johnsen, The Stationary Navier-Stokes Equations in $L^p$ and Related Spaces, Ph. D. Thesis, Mathematics Institute University of Copenhagen, Denmark, 1993.
  • [59] D. D. Joseph, Stability of fluid motions, (2 vols) Springer Tracts in Natural Philosophy, Berlin, Springer Verlag, 1976.
  • [60] R. Kajikaya and T. Miyakawa, On $L^2$-decay of weak solutions of the Navier-Stokes equations in $ℝ^n$, Math. Z. 192 (1986), 135-148.
  • [61] T. Kato, Nonlinear evolution equations in Banach spaces, Proceedings of the Symposium on Applied Mathematics, AMS 17 (1965), 50-67.
  • [62] T. Kato, Nonstationary flows of viscous and ideal fluids in $ℝ^3$, J. Functional Analysis 9 (1972), 296-305.
  • [63] T. Kato, Quasi-linear equations of evolution with application to partial differential equations, in: Lecture Notes in Mathematics 448, Springer, 1975, 25-70.
  • [64] T. Kato, Strong $L^p$ solutions of the Navier-Stokes equations in $ℝ^m$ with applications to weak solutions, Math. Zeit. 187 (1984), 471-480.
  • [65] T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics 1450, 1990, 53-63.
  • [66] T. Kato, Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil. Math. (N.S.) 22 (1992), 127-155.
  • [67] T. Kato, Well-posedness nitsuite, Sugaku (en japonais) 48 (1996), 298-300.
  • [68] T. Kato and H. Fujita, On the non-stationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260.
  • [69] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907.
  • [70] T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not. 10 (1994), 435-444.
  • [71] T. Kawanago, Stability estimate of strong solutions for the Navier-Stokes system and its application, Electron. J. Differential Equations (electronic) (see: http://ejde.math.swt. edu/Volumes/1998/15-Kawanago/abstr.html) 15 (1998), 1-23.
  • [72] A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the initial value problem for viscous incompressible fluids, Izvestia Akad. Nauk SSSR, 21 (1957), 655-680 (en russe).
  • [73] G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in $ℝ^n$, SIAM J. Math. Anal. 3 (1972), 506-511.
  • [74] G. H. Knightly, On a class of global solutions of the Navier-Stokes equations, Arch. Mech. Rat. Anal. 21 (1966), 211-245.
  • [75] T. Kobayoshi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Meth. Appl. Sc. 15 (1992), 599-620.
  • [76] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. P.D.E. 19 (1994), 959-1014.
  • [77] H. Kozono and M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Ind. Univ. Math. Journ. 44 (1995), 1307-1336.
  • [78] L. D. Landau, Sur le problème de la turbulence, Dokl. Akad. Nauk. SSSR 44 (1944), 339-342 (en russe).
  • [79] L. D. Landau et E. M. Lifchitz, Mécanique des fluides, MIR, Moscou, 2ème édition, 1989.
  • [80] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 2nd ed., 1969.
  • [81] Y. Le Jan and A. S. Sznitman, Cascades aléatoires et équations de Navier-Stokes, C. R. Acad. Sci. Paris 324 (1997), 823-826.
  • [82] Y. Le Jan and A.S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations, Prob. Theory Related Fields 109 (1997) 343-366.
  • [83] P. G. Lemarié-Rieusset, Some remarks on the Navier-Stokes equations in $ℝ^3$, Jour. Math. Phys. 39 (1998), 4108-4117.
  • [84] J. Leray, Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82.
  • [85] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.
  • [86] J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331-418.
  • [87] J. Leray, Aspects de la mécanique théorique des fluides, La Vie des Sciences, Comptes Rendus, Série générale, II (1994), 287-290.
  • [88] J. Leray, Selected Papers, Œ uvres Scientifiques, Springer et Société Mathématique de France, Volume II, Fluid Dynamics and Real Partial Differential Equations. Introduction by Peter D. Lax, 1998.
  • [89] J. E. Lewis, The initial-boundary value problem for the Navier-Stokes equations with data in $L^p$, Indiana Univ. Math. Jour. 22 (1973), 739-761.
  • [90] C. C. Lin, The theory of hydrodynamic stability, Corrected reprinting, Cambridge University Press, New York, 1966.
  • [91] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
  • [92] P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol 1. Incompressible models, Oxford University Press, 1996.
  • [93] P. L. Lions et N. Masmoudi, Unicité des solutions faibles de Navier-Stokes dans $L^N(Ω)$, C.R.A.S.P. 327 (1998), 491-496.
  • [94] A. M. Lyapunov, Stability of Motion, (traduit du russe), Academic Press, 1966.
  • [95] J. Málek, J. Nečas, M. Pokorný and M. E. Schonbek, On possible singular solutions to the Navier-Stokes equations, Math. Nachr. (1998).
  • [96] Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, Current Developments in Mathematics 1996, International Press, 105-212 %Cambridge, MA 02238-2872 (à paraître, 1999).
  • [97] Y. Meyer, New estimates for Navier-Stokes equations (manuscrit), Colloque en l'honneur de J.-L. Lions à l'occasion de son 70e anniversaire, Paris 26-27 mai 1998, Auditorium du CNRS, 3 rue Michel-Ange, Paris XVIe, 1998.
  • [98] T. Miyakawa, On the initial value problem for the Navier-Stokes equations in $L^p$ spaces, Hiroshima Math. J. 11 (1981), 9-20.
  • [99] T. Miyakawa, On $L^1$-Stability of Stationary Navier-Stokes Flows in $ℝ^n$, J. Math. Sci. Univ. Tokyo 4 (1997), 67-119.
  • [100] C. L. M. H. Navier, Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. France 6 (1822), 389-440.
  • [101] J. Nečas, M. Rοcirc užička and V. Šverák, On Leray self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), 283-294.
  • [102] H. Okamoto, Exact solutions of the Navier-Stokes equations via Leray's scheme, Japan J. Indust. Appl. Math.14 (1997), 169-197.
  • [103] W. Mc F. Orr, The stability or instability of the steady motion of a liquid. Part II, A viscous fluid, Proc. Roy. Irish Acad. A 27 (1907), 69-138.
  • [104] F. Oru, Rôle des oscillations dans quelques problèmes d'analyse non-linéaire, Thèse de Doctorat de l'Ecole Normale Supérieure de Cachan, 1998.
  • [105] M. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft, Leipzig, 1927.
  • [106] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976.
  • [107] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces for the incompressible Navier-Stokes equations in $ℝ^3$, Ann. Inst. H. Poinc. 13 (1996), 319-336.
  • [108] F. Planchon, Convergence de solutions des équations de Navier-Stokes vers des solutions auto-similaires, Exposé n. III, Séminaire X-EDP, Ecole Polytechnique, 1996.
  • [109] F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in $ℝ^3$, Revista Matematica Iberoamericana 14 (1998), 71-93.
  • [110] F. Planchon, Solutions Globales et Comportement Asymptotique pour les Equations de Navier-Stokes, PhD Thesis, Ecole Polytechnique, France, 1996.
  • [111] S. D. Poisson, Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides, Jour. de l'Ecole Polytechnique 13 (1831), 1-74.
  • [112] M. Reed and B. Simon, Fourier Analysis, vol 2, Academic Press, 1975.
  • [113] O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinouos and the law of resistence in parallel chanels, Phil. Trans. Roy. Soc. London 174 (1883), 935-982.
  • [114] F. Ribaud, Analyse de Littlewood-Paley pour la Résolution d'Equations Paraboliques Semi-linéaires, PhD Thesis, Université d'Orsay, 1996.
  • [115] F. Ribaud, Problème de Cauchy pour les équations paraboliques semi-linéaires avec données dans $H^s_p(ℝ^n)$, C. R. Acad. Sci. Paris 322 (1996), 25-30.
  • [116] F. Ribaud, Semilinear parabolic equations with distributions as initial data, Discrete Contin. Dynam. Systems 3 (1997), 305-316.
  • [117] G. Rosen, Navier-Stokes initial value problem for boundary-free incompressible fluid flow, Phys. Fluid 13 (1970), 2891-2903.
  • [118] M. E. Schonbek, $L^2$-decay for weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. 88 (1985), 209-222.
  • [119] J. Serrin, On the stability of viscous fluid motions, Arch. Rat. Mech. Anal. 3 (1959), 1-13.
  • [120] J. Serrin, Mathematical principles of classical fluid mechanics, Encyclopedia of Physics, Edited by S. Flügge, vol VIII/1, Fluid Dynamics I, co-editor C. Truesdell, Springer-Verlag, 1959.
  • [121] M. Shinbrot, Lectures on Fluid Mechanics, Gordon and Breach, New York, 1973.
  • [122] M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progress in mathematics 100, Birkhäuser, 1991.
  • [123] M. E. Taylor, Analysis on Morrey spaces and applications to the Navier-Stokes and other evolution equations, Comm. PDE 17 (1992), 1407-1456.
  • [124] M. E. Taylor, Partial differential equations. I, II, Applied Mathematical Sciences 115 and 116, Springer Verlag, 1996.
  • [125] R. Temam, Navier-Stokes equations. Theory and numerical analysis. With an appendix by F. Thomasset, Third Edition, Studies in Mathematics and its Applications, North-Holland, 1984.
  • [126] R. Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, in: Développement des Mathématiques au cours de la seconde moité du XXème siècle, J.P. Managing (ed.), 1998.
  • [127] E. Terraneo, Applications de certains espaces fonctionnels de l'analyse harmonique réelle aux équations de Navier-Stokes et de la chaleur non-linéaires, Thèse de Doctorat de l'% Université d'Evry Val d'Essonne, 1999.
  • [128] H. Triebel, Theory of Function Spaces, Monograph in mathematics 78, Birkhäuser, 1983.
  • [129] H. Triebel, Theory of Function Spaces II, Monograph in mathematics 84, Birkhäuser, 1992.
  • [130] C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, J. Rat. Mech. Anal 1 (1952), 125-291.
  • [131] T. P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rat. Mech. Anal. 143 (1998), 29-51.
  • [132] H. Villat, Leçons sur les fluides visqueux, recueillies et rédigées par J. Kravtchenko, Gauthier-Villars, Paris, 1943.
  • [133] M. Vishik, Incompressible flows of an ideal fluid with vorticity in bordeline spaces of Besov type, preprint (1998).
  • [134] K. A. Voss, Self-similar Solutions of the Navier-Stokes Equations, Ph. D. Thesis Yale University, 1996.
  • [135] W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations. Aspects of Mathematics, E8. Friedr. Vieweg and Sohn, Braunschweig, 1985.
  • [136] F. B. Weissler, Local existence and non existence for semilinear parabolic equation in $L^p$, Indiana Univ. Math. Journ. 29 (1980), 79-102.
  • [137] F. B. Weissler, The Navier-Stokes initial value problem in $L^p$, Arch. Rat. Mech. Anal. 74 (1981) 219-230.
  • [138] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on $ℝ^n$, J. London Math. Soc. 35 (1987), 303-313.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv52z1p29bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.