ArticleOriginal scientific text
Title
Klein-Gordon type decay rates for wave equations with time-dependent coefficients
Authors 1, 2
Affiliations
- Faculty of Mathematics and Computer Science, Technical University Bergakademie Freiberg, Bernhard von Cotta Str. 2, 09596 Freiberg, Germany
- Institute of Mathematics, University of Tsukuba , Tsukuba, Ibaraki 305, Japan
Abstract
This work is concerned with the proof of decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation . The coefficient consists of an increasing smooth function and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
Bibliography
- P. Brenner, On
estimates for the wave-equation, Math. Zeitschrift 145 (1975), 251-254. - P. Brenner, On the existence of global smooth solutions of certain semi-linear hyperbolic equations, Math. Zeitschrift 167 (1979), 99-135.
- A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. An Introduction, London Mathematical Society Lecture Note Series, Vol.196, University Press, Cambridge, 1994.
- F. Hirosawa, Energy decay for degenerate hyperbolic equations of Klein-Gorden type with dissipative term, manuscript.
- L. Hörmander, Remarks on the Klein-Gorden equation, Journées Equations aux Dérivées Partielles, Saint Jean de Monts, 1987.
- L. Hörmander, Translation invariant operators in
spaces, Acta Math. 104 (1960), 93-140. - S. Klainerman, Global existence for nonlinear wave equations, Comm. on Pure and Appl. Math. 33 (1980), 43-101.
- Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems, John Wiley & Sons, 1994.
- W. Littman, Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
- H. Pecher,
-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Zeitschrift 150 (1976), 159-183. - R. Racke, Lectures on Nonlinear Evolution Equations, Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1992.
- M. Reissig and K. Yagdjian, An example for the influence of oscillations on
decay estimates, to appear. - M. Reissig and K. Yagdjian, One application of Floquet's theory to
estimates, Math. Meth. Appl. Sci. 22 (1999), 937-951. - M. Reissig and K. Yagdjian,
estimates for the solutions of strictly hyperbolic equations of second order with time dependent coefficients, accepted for publication in Mathematische Nachrichten. - M. Reissig and K. Yagdjian,
estimates for the solutions of hyperbolic equations of second order with time dependent coefficients - Oscillations via growth -, Preprint 98-5, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg. - R. Strichartz, A priori estimates for the wave-equation and some applications, J. Funct. Anal. 5 (1970), 218-235.
- W. v. Wahl,
-decay rates for homogeneous wave-equations, Math. Zeitschrift 120 (1971), 93-106. - K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics. Micro-local approach, Math. Topics, Vol. 12, Akademie Verlag, Berlin, 1997.