ArticleOriginal scientific text

Title

On the coupled system of nonlinear wave equations with different propagation speeds

Authors 1, 1, 2

Affiliations

  1. Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
  2. Mathematical Istitute, Tohoku University, Sendai 980-8578, Japan

Bibliography

  1. D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well posedness of the coupled Schrödinger Korteweg-de Vries equations in the capillary-gravity interaction waves, Proc. Amer. Math. Soc. 125 (1997) 2907-2919.
  2. D. Bekiranov, T. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal. 158 (1998) 357-388.
  3. J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York-Heidelberg, 1976.
  4. J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107-156.
  5. J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. II The KdV equation, Geom. Funct. Anal. 3 (1993) 209-262.
  6. J. Bourgain and J. Colliander, On well-posedness of the Zakharov system, Int. Math. Res. Not. 11 (1996) 515-546.
  7. R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990.
  8. J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki no. 796, Astérisque 237 (1996) 163-187.
  9. J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68.
  10. J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997) 384-436.
  11. C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1-21.
  12. C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573-603.
  13. C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc. 348 (1996) 3323-3353.
  14. S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268.
  15. S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995) 96-103.
  16. S. Klainerman and M. Machedon, Estimates for null forms and the space Hs,δ, Int. Math. Res. Not. 17 (1996) 853-365.
  17. S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave map in 3D, Comm. Part. Diff. Eqs. 22 (1997) 901-918.
  18. H. Lindblad, A sharp counterexample to the local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) 503-539.
  19. H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996) 1-16.
  20. H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995) 357-426.
  21. T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Annalen 313 (1999) 127-140.
  22. H. Pecher, Nonlinear samll data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984) 261-270.
  23. G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Part. Diff. Eqs. 18 (1993) 169-177.
  24. R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-714.
  25. K. Tsugawa, Well-posedness in the energy space for the Cauchy problem of the coupled system of complex scalar field and Maxwell equations, to appear in Fukcialaj Ekvacioj.
  26. K. Tsutaya, Local regularity of non-resonant nonlinear wave equations, Diff. Integr. Eqns. 11 (1998) 279-292.
  27. V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908-914.
Pages:
181-188
Main language of publication
English
Published
2000
Exact and natural sciences