ArticleOriginal scientific text

Title

Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras

Authors 1

Affiliations

  1. Université des Sciences et Technologies de Lille, UFR de Mathématiques, F-59 655 Villeneuve d'Ascq Cedex, France

Abstract

Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra iff the almost complex structure is integrable. Such G-algebras, endowed with a generator turning them into a B(atalin-)V(ilkovisky)-algebra, occur on the B-side of the mirror conjecture. We generalize a result of Koszul to those dG-algebras which arise from twilled LR-algebras. A special case thereof explains the relationship between holomorphic volume forms and exact generators for the corresponding dG-algebra and thus yields in particular a conceptual proof of the Tian-Todorov lemma. We give a differential homological algebra interpretation for twilled LR-algebras and by means of it we elucidate the notion of a generator in terms of homological duality for differential graded LR-algebras.

Keywords

differential graded Lie algebra, twilled Lie-Rinehart algebra, Lie-Rinehart algebra, Batalin-Vilkovisky algebra, Gerstenhaber algebra, mirror conjecture, Calabi-Yau manifold, Lie bialgebra

Bibliography

  1. S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, alg-geom/9710032, Internat. Math. Res. Notices 4 (1998), 201-215.
  2. I. A. Batalin and G. S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567-2582.
  3. I. A. Batalin and G. S. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B 234 (1984), 106-124.
  4. I. A. Batalin and G. S. Vilkovisky, Existence theorem for gauge algebra, Jour. Math. Phys. 26 (1985), 172-184.
  5. F. A. Bogomolov, Hamiltonian Kähler varieties, Sov. Math. Dokl. 19 (1978), 1462-1465; translated from: Dokl. Akad. Nauk SSSR 243 (1978), 1101-1104.
  6. F. A. Bogomolov, Kähler manifolds with trivial canonical class, preprint, Institut des Hautes Etudes Scientifiques 1981, pp. 1-32.
  7. A. Cannas de Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, Volume 10, Amer. Math. Soc. 1999.
  8. C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
  9. A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA 41 (1955), 641-644.
  10. A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I: Derivations in the graded ring of differential forms, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 338-359.
  11. A. Frölicher and A. Nijenhuis, Some new cohomological invariants for complex manifolds, I, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 540-564.
  12. M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288.
  13. M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups and algebraic deformations, in: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds.), Cont. Math. 134, American Mathematical Society, Providence, (1992), 51-92.
  14. E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys. 195 (1994), 265-285.
  15. W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. of Math. 34 (1990), 337-367.
  16. J. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris 236 (1953), 1935-1937.
  17. J. Huebschmann, Poisson cohomology and quantization, J. für die Reine und Angew. Math. 408 (1990), 57-113.
  18. J.. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. für die Reine und Angew. Math. 510 (1999), 103-159.
  19. J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin- Vilkovisky algebras, Annales de l'Institut Fourier 48 (1998), 425-440.
  20. J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, in: Festschrift in honor of J. Stasheff's 60th birthday, Cont. Math. 227 (1999), 145-176, Amer. Math. Soc., Providence R. I.
  21. J. Huebschmann, Twilled Lie-Rinehart algebras and differential Batalin-Vilkovisky algebras, math.DG/9811069.
  22. J. Huebschmann, The modular class and master equation for Lie-Rinehart bialgebras, in preparation.
  23. J. Huebschmann and J. D. Stasheff, Formal solution of the master equation via HPT and deformation theory, math.AG/9906036.
  24. K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I. II., Ann. of Math. 67 (1958), 328-401, 403-466.
  25. Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae 41 (1995), 153-165.
  26. Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Annales de l'Institut Fourier 46 (1996), 1243-1274.
  27. Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold, Letters in Math. Physics 38 (1996), 421-428.
  28. Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations, Annales Inst. H. Poincaré Série A (Physique théorique) 49 (1988), 433-460.
  29. J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985), 251-271.
  30. B. H. Lian and G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys. 154 (1993), 613-646.
  31. J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. of Diff. Geom. 31 (1990), 501-526.
  32. K. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid, preprint 1998; math.DG/9808081.
  33. K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452.
  34. S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften No. 114, Springer, Berlin, 1963.
  35. S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equation, Pac. J. of Math. 141 (1990), 311-332.
  36. Yu. I. Manin, Three constructions of Frobenius manifolds, Atiyah-Festschrift (to appear), math.QA/9801006.
  37. T. Mokri, Matched pairs of Lie algebroids Glasgow Math. J. 39 (1997), 167-181.
  38. R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. III (1961), 130-137.
  39. G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222.
  40. V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, math. AG/9802006.
  41. P. Stachura, Double Lie algebras and Manin triples, q-alg/9712040.
  42. J. D. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt (eds.), Mathematical Physics Studies Vol. 20, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997, 271-284.
  43. G. Tian, A note on Kaehler manifolds with c1=0, preprint.
  44. A. N. Todorov, The Weil-Petersson geometry of the moduli space of su(n) (n ≥ 3) (Calabi-Yau) manifolds, I., Comm. Math. Phys. 126 (1989), 325-346.
  45. E. Witten, Mirror manifolds and topological field theory, in: Essays on mirror manifolds, S. T. Yau (ed.), International Press Co. Hong Kong, 1992, 230-310.
  46. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560.
  47. S. Zakrzewski, Poisson structures on the Poincaré groups, Comm. Math. Phys. 185 (1997), 285-311.
Pages:
87-102
Main language of publication
English
Published
2000
Exact and natural sciences