ArticleOriginal scientific text

Title

Isomorphisms of Poisson and Jacobi brackets

Authors 1

Affiliations

  1. Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

Abstract

We present a general theorem describing the isomorphisms of the local Lie algebra structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp. real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We admit degenerate structures as well, which seems to be new in the literature.

Bibliography

  1. C. J. Atkin and J. Grabowski, Homomorphisms of the Lie algebras associated with a symplectic manifold, Compos. Math. 76 (1990), 315-349.
  2. P. Dazord, A. Lichnerowicz and Ch.-M. Marle, Structure locale des variétés de Jacobi, J. Math. pures et appl. 70 (1991), 101-152.
  3. J. Grabowski, Isomorphism and ideals of the Lie algebras of vector fields, Inv. Math. 50 (1978), 13-33.
  4. J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys. 9 (1992), 45-73.
  5. F. Guedira and A. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirillov, J. Math. pures et appl. 63 (1984), 407-484.
  6. A. A. Kirillov, Local Lie algebras, Russ. Math. Surv. 31 (1976), 55-75.
  7. A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom. 12 (1977), 253-300.
  8. A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. pures et appl. 57 (1978), 453-488.
  9. H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, Berlin, 1974.
  10. S. M. Skriabin, Lie algebras of derivations of commutative rings: Generalizations of the Lie algebras of Cartan type, Preprint WINITI 4405-W87, Moscow University, 1987 (in Russian).
  11. A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557.
Pages:
79-85
Main language of publication
English
Published
2000
Exact and natural sciences