ArticleOriginal scientific text
Title
Linearization and star products
Authors 1
Affiliations
- Département de mathématiques, Université de Metz, Ile du Saulcy, F-57045 Metz Cedex, France
Abstract
The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.
Bibliography
- F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, Lett. Math. Phys. 1 (1977), 521-530.
- M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products. Geometry and physics, Class. Quantum Grav. 14 (1997), A93-A107.
- V. Chloup-Arnould, Groupes de Lie-Poisson, Thèse de l'université de Metz (1996).
- V. Chloup-Arnould, Linearization of some Poisson-Lie tensor, J. of Geometry and Physics 24 (1997), 46-52.
- V. Chloup-Arnould, Star products on the algebra of polynomials on the dual of a semi-simple Lie algebra, Acad. Roy. Belg. Bull. Cl. Sci. (6) 8 (1997), no. 7-12, 263-269.
- M. Cahen, S. Gutt and J. Rawnsley, Non linearizability of the Iwasawa Poisson-Lie structure, Lett. Math. Phys. 24 (1992), 79-83.
- J. F. Conn, Normal forms for analytic Poisson structures, Ann. of Math. 119 (1984), 577-601.
- J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. 121 (1985), 565-593.
- V. G. Drinfeld, Hamiltonian structure on Lie groups and the geometric meaning of the classical Yang-Baxter equation, Sov. Math. Dokl. 27 (1) (1983), 68-71.
- J. P. Dufour, Linéarisation de certaines structures de Poisson, J. Differential Geometry 32 (5) (1990), 415-428.
- S. Gutt, On the second Hochschild cohomology spaces for algebras of functions on a manifold, L.M.P. 39 (1997), 157-162.
- M. Kontsevich, Deformation quantization of Poisson manifold, I, q-alg 9709040.
- Molinier, Linéarisation de structures de Poisson, thèse de l'université de Montpellier II (1993).
- H. Omori, Y. Maeda and A. Yoshioka, Deformation quantizations of Poisson algebras, Contemp. Math. AMS 179 (1994), 213-240.
- A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557.
- A. Weinstein, Poisson geometry of the principal series and non linearizable structures, J. Differential Geometry 25 (1987), 55-73.