Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A variational principle introduced to select some symplectic connections leads to field equations which, in the case of the Levi Civita connection of Kähler manifolds, are equivalent to the condition that the Ricci tensor is parallel. This condition, which is stronger than the field equations, is studied in a purely symplectic framework.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
31-41
Opis fizyczny
Daty
wydano
2000
Twórcy
autor
- Université Libre de Bruxelles, Campus Plaine, CP 218, Bvd du Triomphe, 1050 Brussels, Belgium
autor
- Université Libre de Bruxelles, Campus Plaine, CP 218, Bvd du Triomphe, 1050 Brussels, Belgium
autor
- Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
Bibliografia
- [1] A. Besse, Einstein Manifolds, Springer, 1986.
- [2] P. Bieliavsky, Espaces symétriques symplectiques, thèse de doctorat, Université Libre de Bruxelles, 1995.
- [3] F. Bourgeois and M. Cahen, A variational principle for symplectic connections, J. Geometry and Physics, (sous presse).
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. II, Interscience Publ., 1969. Einstein Manifolds, Springer, 1986.
- [5] A. Lichnerowicz, Quantum mechanics and deformations of geometrical dynamics, in: Quantum theory, groups, fields and particles, Reidel, 1983, 3-82.
- [6] O. Loos, Symmetric Spaces, Benjamin, 1969.
- [7] I. Vaisman, Symplectic curvature tensors, Monatshefte Math. 100 (1985), 299-327.
- [8] H. Wu, Holonomy groups of indefinite metrics, Pac. J. Math. 20 (1967), 351-392.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv51z1p31bwm