ArticleOriginal scientific text

Title

Aspects of Geometric Quantization Theory in Poisson Geometry

Authors 1

Affiliations

  1. Department of Mathematics, University of Haifa, Israel

Abstract

This is a survey exposition of the results of [14] on the relationship between the geometric quantization of a Poisson manifold, of its symplectic leaves and its symplectic realizations, and of the results of [13] on a certain kind of super-geometric quantization. A general formulation of the geometric quantization problem is given at the beginning.

Keywords

polarization, super-geometric quantization, presymplectic realization, quantization triple

Bibliography

  1. P. Dazord, Réalisations isotropes de Libermann, Travaux du Séminaire Sud-Rhodanien de Géométrie II. Publ. Dept. Math. Lyon 4/B (1988), 1-52.
  2. F. Guédira and A. Lichnerowicz, Géométrie des algèbres de Lie de Kirillov, J. Math. pures et appl. 63 (1984), 407-484.
  3. Y. Kerbrat and Z. Souici-Benhammadi, Variétés de Jacobi et groupoï des de contact, C. R. Acad. Sci. Paris, Sér. I 317 (1993), 81-86.
  4. J. Huebschmann, Poisson cohomology and quantization, J. reine angew. Math. 408 (1990), 57-113.
  5. A. Kirillov, Local Lie algebras, Russian Math. Surveys 31 (1976), 55-75.
  6. B. Kostant, Quantization and unitary representations, in: Lectures in modern analysis and applications III (C. T. Taam, ed.). Lect. Notes in Math. 170, Springer-Verlag, Berlin, Heidelberg, New York, 1970, 87-207.
  7. A. Yu. Kotov, Remarks on geometric quantization of Poisson brackets of R-matrix type, Teoret. Mat. Fiz. 112 (2) (1997), 241-248 (in Russian). (Transl. Theoret. and Math. Phys. 112 (2) (1997), 988-994 (1998).)
  8. M. de León, J. C. Marrero and E. Padrón, On the geometric quantization of Jacobi manifolds. J. Math. Phys. 38 (1997), 6185-6213.
  9. J. M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970.
  10. I. Vaisman, Geometric quantization on spaces of differential forms, Rend. Sem. Mat. Torino 39 (1981), 139-152.
  11. I. Vaisman, On the geometric quantization of the Poisson manifolds, J. Math. Phys. 32 (1991), 3339-3345.
  12. I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in Math. 118, Birkhäuser, Basel, 1994.
  13. I. Vaisman, Super-geometric quantization, Acta Math. Univ. Comenianae 64 (1995), 99-111.
  14. I. Vaisman, On the geometric quantization of the symplectic leaves of Poisson manifolds, Diff. Geom. Appl. 7 (1997), 265-275.
  15. N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1980.
  16. P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Commun. Math. Physics 200 (1999), 545-560.
Pages:
283-292
Main language of publication
English
Published
2000
Exact and natural sciences